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ABSTRACT 

Acoustic-to-articulatory mapping is the estimation of a time-varying vocal-tract 

shape from an acoustic waveform. While most research in acoustic-to-articulatory 

mapping considers only purely voiced speech, this dissertation investigates the prob- 

lem for speech that includes fricatives. Aspects of fricative production and perception 

challenge many of the assumptions and techniques used in existing acoustic-to-artic- 

ulatory mapping algorithms. This work investigates these issues and extends existing 

techniques for the acoustic-to-articulatory mapping of purely voiced speech to un- 

voiced and voiced fricatives in isolation and in continuous speech. 

Linked-codebooks are used to examine the acoustic-to-articulatory mapping of 

voiced and unvoiced static fricatives. Acoustic-to-articulatory mapping performance 

is evaluated by analyzing articulatory estimation error for a number of synthetic 

fricatives and phonetic class clustering for a collection of real fricatives. Scatter plots 

of acoustic-to-articulatory mapping results on unvoiced fricatives demonstrate good 

phonetic class clustering and inter-class separability. Constraints on solutions are 

necessary to eliminate physically implausible solutions. For equivalent performance on 

voiced fricatives, the acoustic features had to be modified to deemphasize frequencies 

below 1 kHz. 
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Linked-codebook lookup, along with dynamic programming, is used to perform 

acoustic-to-articulatory mapping of continuous, purely voiced speech. Direct appli- 

cation of the algorithm to speech containing fricatives suggests that purely voiced 

acoustic-to-articulatory mapping provides contextual information that can improve 

fricative acoustic-to-articulatory mapping. The acoustic-to-articulatory mapping of 

intervocalic fricatives using different forms of contextual information demonstrates 

this point. A five step procedure is developed for the dynamic acoustic-to-articulato- 

ry mapping of continuous, voiced speech containing intervocalic fricatives. Multiple 

stages of processing are used to bootstrap articulatory estimates using contextual 

information. A collection of vowel-fricative-vowel tokens is used for development and 

testing. In most cases, the estimated articulatory trajectories appear natural and 

form fricatives with the correct place of articulation. Occasional errors occur due 

to vowel or fricative misidentification early in the optimization process. Problems in 

the vowel-fricative transition and source parameter optimizations ultimately limit the 

perceptual quality of the resynthesized speech. 
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CHAPTER 1 

INTRODUCTION 

Acoustic-to-articulatory mapping is the estimation of the vocal-tract shape during 

speech from only the acoustic waveform. As depicted in Figure 1.1, acoustic-to-artic- 

ulatory mapping is the reverse of the speech production process, and is often referred 

to as inverse mapping. The shape of the vocal-tract, referred to as the vocal-tract 

area-function, is of great importance to linguistics and has direct applications to engi- 

neering and medicine. For engineering purposes, vocal-tract area-function data offer 

the potential for improved speech coding, synthesis, and recognition. It is generally 

accepted that articulatory representations can offer more parsimonious descriptors of 

speech than acoustic representations. This suggests the possibility of high quality, low 

bit-rate (< 4 kbit/s) speech coding [1]. For similar reasons, the availability of area- 

function data would help the development of more accurate and efficient articulatory 

models, synthesis schemes, and control strategies for articulatory speech synthesizers. 

Some researchers suggest that speech recognition may be performed more effectively 

in an articulatory domain [2, 3], where the effects of coarticulation can be easily com- 

pensated. Acoustic-to-articulatory mapping solutions are necessary to make this a 

reality. 



Speech 
Production 

Speech 
Waveform 

Articulatory 
Configuration 

An  /"Ar 

Articulatory- 
to-Acoustic 
Mapping 

Acoustic-to- 
Articulatory 
Mapping 

Figure 1.1: During speech production, vocal-tract shape is varied to produce a speech 
waveform. This speech production process is an articulatory-to-acoustic mapping. Its 
inverse, acoustic-to-articulatory mapping, attempts to estimate the vocal-tract shape 
from the speech waveform. 

Acoustic-to-articulatory mapping is a challenging problem that has been studied 

for over 30 years [4]. Past work suggests that the lofty goal of area-function recovery 

is difficult to realize. Time-varying area-functions must be estimated from sampled 

speech which, due to its band limited nature, contains a limited amount of infor- 

mation. It is well documented that the acoustic-to-articulatory transformation is not 

one-to-one and that the presence of multiple valid solutions can complicate the acous- 

tic-to-articulatory mapping problem. Analytic solutions for deriving area-functions 

from the speech waveform exist only for a few special cases. As a result, approaches to 

acoustic-to-articulatory mapping must take an analysis-by-synthesis approach that, 

based on some model of speech production, iteratively searches for the area-function 

whose synthetic speech best matches the original speech. Research in speech pro- 

duction and acoustics has produced a variety of articulatory-based speech synthesis 
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schemes which simulate the acoustics of sound production in the human speech mech- 

anism [5, 6, 7, 8]. Of course, these synthesis systems can only approximate speech 

production in humans. A number of assumptions and simplifications must be ap- 

plied to make the simulation tractable and to account for gaps in our knowledge of 

the speech production process. The assumptions and simplifications necessary for a 

tractable synthesis system can severely bias the results of analysis-by-synthesis, and 

limit the ability of inverse solutions to produce the true vocal-tract shape. 

Work on the acoustic-to-articulatory mapping problem started with isolated vow- 

els. In this static case, a single area-function is estimated from a single frame of 

speech. Attempts to solve the problem analytically discovered that the acoustic-to- 

articulatory transformation does not have a single unique solution. The few analytic 

techniques proposed [9,10,11] have unrealistic requirements such as acoustic measure- 

ments with infinite bandwidth, a vocal-tract without losses, and unnatural boundary 

conditions. 

As computational power increased, analysis-by-synthesis approaches to the acous- 

tic-to-articulatory mapping of static vowels such as [12] became feasible. Many tech- 

niques were proposed for avoiding local minima during optimization and dealing with 

the non-uniqueness problem. Acoustic-to-articulatory mapping systems for continu- 

ous, purely voiced speech [13, 14, 15] were also investigated. In this dynamic acous- 

tic-to-articulatory mapping problem, requiring continuity in the time-varying artic- 

ulatory shape was found to alleviate much of the non-uniqueness problem. A good 

survey of acoustic-to-articulatory mapping work can be found in [4]. A good review 

of past work can also be found in [16, 1]. 
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Extension of these dynamic algorithms to include consonants has proven difficult. 

Consonant speech contains many characteristics that make acoustic-to-articulatory 

mapping more challenging than for purely voiced speech. Intervals of silence, such 

as during closure in stops, have a reduced information content which can make esti- 

mation more difficult. Downstream acoustic energy sources due to frication can be 

mixed with energy due to voicing, and must be separated. For many consonants, the 

vocal-tract shape can have a significant effect on the acoustic energy source which 

prevents the source and tract from being decoupled as is commonly done for voiced 

sounds. Forward models of consonants are not as well developed as for vowels due to 

the transient and sometimes non-linear nature of consonants. 

Little has been reported on the acoustic-to-articulatory mapping of speech con- 

taining consonants. Acoustic-to-articulatory mapping of isolated unvoiced fricatives 

has been performed by Sorokin [17] and Shirai and Masaki [18]. Badin and Abry [19] 

report inverse mapping on continuous speech containing voiced fricatives. The acous- 

tic-to-articulatory mapping system of Schroeter and Sondhi [1, 4] is formulated to 

include consonant speech, but few examples are given and unsatisfactory results are 

reported for fricatives. 

The research described herein considers the extension of existing acoustic-to-artic- 

ulatory mapping algorithms to consonant speech, specifically fricatives. Static frica- 

tives are considered first using a table-based procedure known as linked-codebook 

lookup. Results show that fricative inversion is very susceptible to the many-to- 

one mapping problem, but that with sufficient constraints, reasonable and consistent 

results can be achieved. Acceptable performance for voiced fricatives requires the 

use of acoustic features that de-emphasize the influence of frequencies below 1 kHz. 
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Dynamic fricative acoustic-to-articulatory mapping is considered by combining the 

results for static fricatives into an algorithm for the inverse mapping of voiced, con- 

tinuous speech. The ability of contextual information to improve fricative estimates 

is described. The capabilities and limitations of the algorithm are explored with 

vowel-fricative-vowel tokens from a male speaker. 

This dissertation is organized as follows. The acoustic-to-articulatory mapping 

problem is formally defined in Chapter 2. The articulatory speech synthesizer used 

for our experiments is described in Chapter 3. In Chapter 4, linked-codebooks are 

used to study the static acoustic-to-articulatory mapping of vowels and fricatives 

using synthetic and real data. In Chapter 5, an acoustic-to-articulatory mapping 

algorithm is developed for continuous, voiced speech by using dynamic programming 

along with linked-codebook lookup to select articulatory trajectories. The results for 

static fricative inversion are used in Chapter 6 to augment the dynamic acoustic-to- 

articulatory mapping routine to include intervocalic fricatives. Chapter 7 reviews our 

results and conclusions and discusses directions for future work. 



CHAPTER 2 

OVERVIEW 

2.1    Problem Definition 

The acoustic-to-articulatory mapping problem is defined in terms of the forward 

articulatory-to-acoustic mapping. This forward mapping represents the human speech 

production mechanism and the acoustic and aerodynamic processes within that mech- 

anism which create an acoustic waveform. The forward mapping, S, takes a time- 

varying function, x, describing the state and shape of the speech production system 

and produces a speech waveform, s. 

s = S{x) (2.1) 

The objective of acoustic-to-articulatory mapping is to infer the true time-varying 

vocal-tract shape and state from the speech waveform. This is the inverse of the 

forward mapping. 

x = «S-1(s) (2.2) 

Since the definition of acoustic-to-articulatory mapping starts from a forward artic- 

ulatory-to-acoustic mapping, it is often referred to as an inverse problem or even 

the inverse problem in certain contexts. As for all inverse problems, the existence 
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and uniqueness of inverse solutions are important issues. For acoustic-to-articulatory 

mapping, if s is created by a human, then its corresponding vocal-tract state, x, will 

exist; however, due to evidence of compensatory articulation, it is unclear whether x 

will always be unique. 

In acoustic-to-articulatory mapping systems, an articulatory speech synthesizer 

is used to simulate the speech production process. Due to computational require- 

ments and our limited knowledge about the speech production process, an articula- 

tory speech synthesizer, represented by S, only approximates the true forward model, 

S. Approximations and inaccuracies in the forward model cause error in our estimates 

of x. 

x = S-1(s) (2.3) 

e = x - x (2.4) 

Quite often, the vocal-tract volume is represented in terms of an articulatory 

model, A, which describes vocal-tract shape in terms of the position of articulators 

such as the tongue, lips, and velum. An articulatory model can be considered a front- 

end to an articulatory speech synthesizer, converting some parametric description of 

articulator position and/or trajectory, p, into an vocal-tract description, x, which 

drives an articulatory speech synthesizer. 

x = A(p) (2.5) 

This is depicted in Figure 2.1. Components of p correspond to vocal-tract and glottal- 

source parameters. The articulatory model generally represents vocal-tract shape 

with fewer parameters by applying knowledge about speech physiology to constrain 
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Articulatory 
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Vocal-Tract 
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Synthetic 
Speech 

Articulatory 
Speech Synthesizer 

Figure 2.1: The forward articulatory-to-acoustic mapping. 

vocal-tract shape and state to those physically realizable [20, 21]. The articulatory 

model is another source of approximation error in the forward model. The efficiency 

of an articulatory model description of the vocal-tract simplifies inverse mapping 

procedures and often outweighs the additional modeling error incurred. 

In this new formulation of the inverse problem, the forward acoustic-to-articula- 

tory mapping is approximated as 

5 = S(A(p)) = J(p) (2.6) 

and the corresponding inverse mapping is 

P = A-1(S-1(s)) = J-\s). (2.7) 

The vocal-tract shape and state may then be calculated from the inverse solution. 

± = A(J-1(s)) (2.8) 

For most articulatory speech synthesizers there are no known analytic inverses, 

<S_1, available. A few analytic solutions exist for very simplified cases, but they re- 

quire restrictive assumptions on the forward mapping, such as lossless acoustic wave 

propagation and precise knowledge of boundary conditions at the lips and the glot- 

tis [9, 10, 11]. Therefore, a common approach to calculating the inverse is called 
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analysis-by-synthesis. Let D(s, s) be a measure of distance between two speech sig- 

nals. Through efficient search procedures, an estimate, x, can be found that minimizes 

this distance measure. 

x = arg minD{s, S(y)) (2.9) 

Analysis-by-synthesis cannot guarantee the validity of a result if solutions are 

not unique. Analysis-by-synthesis techniques are also susceptible to local minima. 

Note that due to the "model mismatch" of the articulatory speech synthesizer, it is 

possible that a solution does not exist for which D = 0. In this case, the solution 

that minimizes D is chosen. 

Acoustic-to-articulatory mapping is a challenging problem whose solution involves 

both the accurate modeling of the forward speech production process and the efficient 

estimation of the inverse of the forward model. Although inaccuracies in the forward 

model produce estimation error, some modeling assumptions are necessary and enable 

the inverse to be found without great difficulty. As research progresses in acoustic- 

to-articulatory mapping, the balance between accuracy and solvability will be further 

explored. 

2.2    Research Issues in Acoustic-to-Articulatory Mapping 

Ever since the first computer simulations of speech productions were performed, 

speech researchers have been searching for a way to determine, from acoustics alone, 

the dynamic shape of the vocal-tract during speech production. A large number of 

researchers have attempted the problem using a wide variety of approaches. Progress 

has been fueled by increasing computational power and better understanding of the 
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speech production process.  While reasonable success has been achieved for voiced, 

non-obstruent, non-nasalized speech, the complete problem remains unsolved. 

Any solution to the acoustic-to-articulatory mapping problem must address four 

interrelated issues. The wide variety of acoustic-to-articulatory mapping approaches 

can be understood and compared in terms of these issues. 

1. Which forward model should be used? This choice is a tradeoff between 

physical accuracy and computational efficiency constrained by our incomplete 

understanding of the speech production process. The forward model selection 

has a significant effect on the other three research issues. 

2. What optimization techniques should be used? While almost all ap- 

proaches use analysis-by-synthesis, their implementation varies widely. Pos- 

sible approaches include artificial neural networks (ANNs), table lookup, ge- 

netic algorithms, and brute-force optimization. Primary research issues include 

dealing with the non-uniqueness of solutions and avoiding local minima during 

optimization. 

3. What cost functions should be minimized? All analysis-by-synthesis al- 

gorithms look for a solution that minimizes some acoustic distance measure. 

The type of acoustic distance measure affects whether acoustic-to-articulatory 

mapping solutions close in acoustic distance are close in articulatory distance. 

Distance measures also influence how well the resynthesized speech matches 

the original speech. While this third issue may be considered a part of the 

inverse mapping algorithm design, it is made a separate issue herein since it is 

a distinguishing feature of many acoustic-to-articulatory mapping attempts. 
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4. How should results be evaluated? Due to the assumptions and simplifi- 

cations in the forward model and the limitations of analysis-by-synthesis tech- 

niques, acoustic-to-articulatory mapping estimates may not get very close to the 

true vocal-tract shape and state. This point, coupled with the fact that com- 

plete vocal-tract shape is unavailable for continuous speech, makes evaluating 

the results of acoustic-to-articulatory mapping difficult. 

These four issues are explored in greater detail below. 

2.2.1    Issue One: Selection of a Forward Model 

Incomplete understanding of the speech production process combined with com- 

putational limitations prevents perfect modeling of the human speech production 

mechanism. Even the most complex articulatory speech synthesizers embody many 

assumptions and simplifications regarding speech acoustics, aerodynamics, and phys- 

iology. The accuracy of the forward model has a significant effect on the nature of a- 

coustic-to-articulatory mapping algorithms and the quality of their solutions. Greater 

accuracy in the forward model generally improves the quality of inverse mapping solu- 

tions. As observed by Parthasarathy and Coker [14], "automatic optimization methods 

work well only when the analysis synthesis model is capable of a very good fit, and the 

error can be driven substantially to zero. When the best choice of model parameters 

does not approximate the data well, known objective metrics do not make perceptu- 

ally sensible compromises." Unfortunately, synthesizers with greater accuracy and 

detail often require more elaborate input specifications. As more input parameters 

must be estimated from the same segment of speech, the estimation problem becomes 

harder. Additional information about speech production can help relieve the problem 
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somewhat by adding constraints to the solutions, but often this type of information 

is unavailable or incomplete. Therefore, selection of a forward model for acoustic- 

to-articulatory mapping is a tradeoff between modeling accuracy and computational 

complexity in both the forward model and the acoustic-to-articulatory mapping so- 

lution. 

The wide variety of assumptions and design choices available for an articulatory 

speech synthesis will not be discussed here. Chapter 3 gives an overview of articu- 

latory speech synthesis techniques and addresses some of the issues in selection of a 

forward model. One standard assumption will be discussed below, a common assump- 

tion that has a significant effect on the nature of acoustic-to-articulatory mapping 

solutions. 

The vocal-tract forms a three dimensional volume through which acoustic waves 

propagate. While full three dimensional acoustic simulations exist, they are quite 

computationally demanding. Therefore a standard assumption in most articulatory 

speech synthesizers and the forward model of all known acoustic-to-articulatory map- 

ping attempts is that of planar acoustic wave propagation. With only plane-wave 

propagation, the full three dimensional acoustic simulation reduces to a single spatial 

dimension. This significantly reduces computational complexity. Additionally, the 

vocal-tract representation reduces to a straight tube of non-uniform cross-sectional 

area. This is a more manageable description of vocal-tract shape that may be de- 

scribed by x(l,t), a function of time, t, and location, I, along the total length, L, 

of the vocal-tract. This function of one spatial dimensional is commonly called an 

area-function. For convenience, many synthesizers use a one dimensional description 
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for all speech sounds, even though the assumption is not always valid. This form will 

be assumed throughout this document, unless otherwise noted. 

Description of the vocal-tract via area-function, x(l, t), does not utilize any infor- 

mation about speech physiology. The shape and range of motion of speech articulators 

such as the tongue, lips, jaw, and velum constrain the area-function in both shape and 

change of shape. Articulatory models attempt to represent the natural constraints 

imposed by articulatory kinetics. Articulatory models are the place where researchers 

have the greatest freedom to make changes in the forward model. Articulatory models 

are discussed in more detail in Chapter 3. 

Most articulatory models depict the vocal-tract at a single instant in time. Al- 

though this frame-based approach does not take advantage of the slowly time-varying 

properties of vocal-tract articulators, it is by far the most common formulation. If 

parameters are estimated jointly over multiple frames, inter-frame correlation can be 

exploited through constraints on or parameterization of the articulatory trajectories. 

Parameterized articulatory trajectories can represent vocal-tract shape over many 

frames more efficiently and can help alleviate the many-to-one mapping problem, 

but are severely limited by the requirements of optimization [3, 14]. Optimization 

becomes less efficient as the number of parameters to be optimized increases. Com- 

monly known as the "curse of dimensionality", feature size is a significant issue in 

articulatory-to-acoustic mapping. Feature size is a major issue in the selection of 

input and output representations, where a tradeoff must be made between modeling 

accuracy and the ability of an optimization algorithm to find a reasonable solution in 

a reasonable amount of time. 

13 



As an alternative to the frame or multi-frame-based descriptions, the kinematics of 

articulator motion can be represented as a dynamical system whose controlling inputs 

are then estimated. In this way, articulatory motion can be expressed by targets or 

goals which can be more easily linked to underlying phonemes or gestures [14, 16, 

22]. These approaches offer great potential for solving the acoustic-to-articulatory 

mapping problem but require much more information about speech physiology and 

production in order to be implemented successfully. 

Many representations have been proposed that represent articulation more effi- 

ciently than raw area-functions by reducing the dimensionality of the articulatory 

space and constraining the area-functions to those realizable by human articulation. 

Articulatory models allow for more natural description and interpolation of config- 

urations than raw area-function representations. The choice of articulatory repre- 

sentation has a significant impact on optimization performance and must balance a 

number of tradeoffs. More parameters improve synthesis accuracy, but increase the 

dimensionality of the articulatory space making the optimization problem more diffi- 

cult. Of course, there is the risk that modeling errors will over-constrain the problem, 

eliminating some potentially good solutions. 

2.2.2    Issue Two: Techniques for Solution of Inverse Mapping 

As discussed in Section 2.1, analytic solutions to the inverse mapping are unavail- 

able for all but the simplest cases. As a result, numerical procedures must be used in 

an analysis-by-synthesis manner to solve the acoustic-to-articulatory mapping prob- 

lem. Conventional multidimensional optimization procedures are iterative techniques, 

typically employing some form of gradient descent with constraints to find a locally 
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optimal solution. Non-gradient techniques, such as simulated annealing and genetic 

algorithms are also used. 

While most acoustic-to-articulatory mapping efforts are alike in that they use 

analysis-by-synthesis, they widely differ in implementation. This is due, in part, to 

the variety of forward models used. Specifically, optimization for frame-based forward 

models differ from optimization for forward models based on dynamical systems. But 

for all approaches, two main problems must be addressed: local-minima, and non- 

uniqueness. 

A major difficulty in the solution of the inverse problem for speech is the pres- 

ence of multiple solutions. This non-uniqueness property has been well documented 

in the literature, both theoretically and empirically [23, 5]. Non-uniqueness mani- 

fests itself in a phenomenon known as compensatory articulation, where the acoustic 

effects of changes by one articulator are compensated by adjustments in other articu- 

lators. The most common example of compensatory articulation is the ventriloquist 

effect, in which a performer produces intelligible speech without any observable lip or 

jaw movement. Researchers have documented many compensatory relations. Hyoid 

height and lip protrusion can move together to keep the vocal-tract length unchanged. 

Rhotization of certain sounds, which lowers third formant frequency, can be produced 

by lip rounding and/or tongue raising in a compensatory manner. Other examples 

can be found in bite block experiments and lip-tug experiments. 

The presence of non-uniqueness in the inverse mapping can also be shown from a 

theoretical point of view. Given a lossless vocal-tract of length, L, closed at one end 

and open at the other, the area-functions, x(l),0 < I < L and l/x(L - l),0 < I < L, 
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produce the same transfer function. It is unclear how the presence of losses affects 

non-uniqueness. 

When performing acoustic-to-articulatory mapping some of the effects of non- 

uniqueness can be reduced by constraining solutions only to those which are phys- 

iologically possible and by enforcing continuity over time in estimated vocal-tract 

trajectories. While some constraints can be imposed on the forward model through 

an articulatory model, other additional constraints can be incorporated into the error 

measure, 

D = Dacoust(s,s)+p\\p-p0\\, p>0. (2.10) 

The error measure consists of an acoustic distance, Dacoust, and an articulatory (ge- 

ometric) distance weighted by p. The value, p0, can be defined as a neutral position 

or the previous frame estimate. Adding the geometric distance to the overall error 

metric helps to transform the optimization problem to a more well behaved one, much 

like regularization in the optimization of linear systems. This form of error measure 

has been used in many ways. Sorokin [24] added a static measure of muscle effort in 

the form of a distance from a neutral position to his optimization criterion. Schroeter, 

Larar, and Sondhi [13] used a geometric distance from the previous frame estimate 

in their error measure in which the weight, p, changed depending on the current 

speech class. Shirai and Kobayashi [3] used both distance from neutral position and 

distance from the previous frame estimate by adding a third weighted term to their 

error measure. 

Another common problem in optimization is the presence of local minima in the 

error surface. Most numerical techniques risk converging to local minima resulting 

in non-optimal solutions. This is a second source of non-ideal solutions, separate 
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from the one of non-uniqueness, that adds to the number of possible solutions from 

which to choose. The problem of local minima is well documented in optimization 

literature and is difficult to avoid. Some new algorithms such as simulated annealing 

and genetic algorithms show potential for finding a global minimum in the limit. 

One approach for reducing the local minima problem is to start the optimization 

process at the solution of the previous frame optimization, with the rationalization 

that articulatory configurations close in time should also be close in position. Of 

course, choosing a starting point for the first optimization remains a problem. This 

motivates an alternative method of selecting the starting point for optimization using 

linked codebooks or lookup tables [12, 15]. In these schemes, a table of articulatory 

shapes and corresponding acoustic consequences is generated. When choosing a start- 

ing point, the articulatory configuration whose consequence is closest to the desired 

one is used as the starting point. Schroeter and Sondhi [25] extended the codebook 

approach using dynamic programming. Instead of simply selecting the best start- 

ing point from a codebook according to some measure, the best starting trajectory 

is found by adding continuity constraints to the spectral measures in the dynamic 

programming scheme. This approach helps alleviate both the non-uniqueness and 

local-minima problems. 

Artificial neural networks (ANNs) have also been considered for selecting starting 

points and even for tackling the entire acoustic-to-articulatory mapping problem. 

See [4] for a good survey of ANN techniques. 
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2.2.3    Issue Three: Definition of a Cost Function 

To estimate x(l, t) using the analysis-by-synthesis approach, a cost function, D(s, s), 

between the original and resynthesized speech must be defined. This cost function, 

a measure of acoustic distance, should ideally be a good measure of e, the distance 

between the estimated and actual vocal-tract shape.   For good quality resynthesis, 

the cost function should also emphasize perceptually significant differences. 

Many acoustic feature representations and distance metrics have been applied 

to the acoustic-to-articulatory mapping problem. Euclidean distance between (log) 

formant frequencies is very common [12, 16, 9, 10, 26, 27, 24] along with spectral/log- 

spectral distances [28, 29], and weighted cepstral distances [3, 14, 30, 31]. Some 

researchers have proposed using multiple error criteria [14, 31] in a sequential manner. 

While the dimensionality of the acoustic space does not directly affect the opti- 

mization procedure, the acoustic representation can weight the importance of certain 

spectral differences over others. For example, Sorokin [24] found that optimizing the 

first three log formant frequencies gave better results than just two log formant fre- 

quencies, but four log formant frequencies gave worse results. One explanation for this 

observation is that adding additional acoustic constraints, in the form of additional 

formant frequencies, reduces the relative sensitivity to all the formant frequencies. 

Therefore, it is important that the acoustic vector weight perceptually significant 

differences over other differences. 

Often, the acoustic distance of the cost function is augmented with other distance 

metrics that enforce continuity in the estimated articulatory parameters or apply 

some form of regularization. The design of these joint distance measures is a part of 

engineering the inverse mapping routine. 
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2.2.4    Issue Four: How to Evaluate Results 

The way we evaluate the quality of acoustic-to-articulatory mapping solutions 

depends substantially on the motivation for pursuing acoustic-to-articulatory map- 

ping. Ideally, a comparison between the estimated and actual vocal-tract shapes 

as in Equation 2.4 should be used. Accurate vocal-tract shape measurements are 

very difficult to obtain, so an absolute measure of estimation accuracy is generally 

unavailable. Recently, complete volumetric measurements of the vocal-tract during 

the production of steady state sounds have been obtained using magnetic resonance 

imaging (MRI) [32, 33]. With this data, accurate comparisons can be made. Unfor- 

tunately, these measurements are expensive and cannot yet be made on continuous 

speech. Partial articulatory measurements can be used for a qualitative evaluation 

of results. Possible measurements include x-ray photography, electropalatography, 

ultra-sonic imaging, or the tracking of pellets on articulators using electromagnetic 

or x-ray microbeam techniques. 

Even if accurate measurements of vocal-tract shapes were available, current state 

of the art in acoustic-to-articulatory mapping is far from estimating true vocal-tract 

shape with much accuracy. Nevertheless, acoustic-to-articulatory mapping has many 

potential applications in speech recognition, coding, and synthesis. With these ap- 

plications in mind, the quality of acoustic-to-articulatory mapping results can be 

measured indirectly in many ways. A very common measure of acoustic-to-articula- 

tory mapping results is the quality of the resynthesized speech. This is the "speech 

mimic" approach to acoustic-to-articulatory mapping. Another way to evaluate a- 

coustic-to-articulatory mapping results is to see how well they perform as features for 

speech recognition. 
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Sometimes, acoustic-to-articulatory mapping is applied to synthetic speech, for 

which the true vocal-tract shape in known. This is effective for testing solution 

techniques but avoids the serious "model mismatch" issue that plagues most acous- 

tic-to-articulatory mapping systems. 

2.3    Acoustic-to-Articulatory Mapping of Non-Voiced Speech 

Most of the work in acoustic-to-articulatory mapping has been on voiced, non- 

obstruent and non-nazalized speech. One reason is that the forward models for voiced 

speech are the most accurate of all speech sounds. Additionally, perceptually-based 

cost functions available from research in speech recognition and speech coding are 

generally tailored to voiced sspeech. The speech production process for sounds such 

as nasals, fricatives, and stops is not as well understood. Overcoming these obstacles 

for the acoustic-to-articulatory mapping of consonants is a great challenge. 

Acoustic-to-articulatory mapping of fricative consonants has been studied by a 

number of researchers. Sorokin [17] and Shirai [18] both looked at the problem for the 

static unvoiced fricative case and reported reasonable inverse mapping results. Acous- 

tic-to-articulatory mapping of voiced or dynamic fricatives has not been considered in 

isolation. Consonant inversion has been reported in the complete acoustic-to-articula- 

tory mapping system of Schroeter and Sondhi [1, 4] and formulated in Parthasarathy 

and Coker [14]. While inversion of some nasal and stop consonants is described by 

Schroeter and Sondhi [4], they report unsatisfactory results for fricatives [1]. An 

elaborate investigation into fricative production modeling and inverse mapping was 

performed by Scully et al. [34]. They were studying fricative production by simulating 

spoken VFV tokens along with other acoustic and aerodynamic measurements using a 
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articulatory speech synthesizer. Acoustic-to-articulatory mapping for dynamic sounds 

using parametric models was used along with hand tuning to reproduce the speech 

tokens in high detail. The Speech Maps effort [35] has driven research in acoustic-to- 

articulatory mapping that includes consonant speech. Beautemps et al. [36, 37] used 

acoustic and articulatory measurements to derive sagittal width to area-function rule 

and estimate area-functions for vowels and unvoiced fricatives. Badin and Abry [19] 

continue this work and report inverse mapping on continuous speech containing voiced 

fricatives. They use smoothed formant frequencies alone to estimate area-function and 

constrained constriction area during the fricative. 

2.4    Philosophy 

Area-function recovery is a very difficult and arguably unattainable goal [38, 39]. 

The transfer function of a lossless vocal-tract does not uniquely specify its area- 

function. Theoretical non-uniqueness has already been mentioned. Information is 

not available at all frequencies due to the approximately 6 dB/octave roll-off of the 

speech spectrum. Additionally, the assumption of plane wave propagation, a standard 

assumption, breaks down above frequencies around 4 or 5 kHz. To further confound 

the problem, uncertainty about the excitation makes separating the speech wave into 

source and transfer function components difficult. 

The analysis-by-synthesis approach to acoustic-to-articulatory mapping, as de- 

fined in Equation (2.9) and applied in most research attempts, actually performs 

feature matching, a task quite different from area-function recovery.   The goal of 
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Figure 2.2: Black box viewpoint of acoustic-to-articulatory mapping. 

area-function recovery supersedes that of feature matching; a good solution for area- 

function recovery will be a good solution for feature matching. The converse is not 

necessarily true unless the forward mapping is accurate. 

The feature matching viewpoint can be generalized to an extreme by using the 

black box viewpoint of Figure 2.2. Given a forward model (black box), the goal 

of feature mapping is to estimate the control inputs to that model that minimize 

the error between the original utterance and the resynthesized version. The forward 

model can be anything: an articulatory speech synthesizer, a formant synthesizer, 

a LP coder, a modulation model, etc. Assuming that the black box is capable of 

reproducing all speech sounds, i.e. the range of the black box sufficiently spans the 

feature space, then a solution can always be found. All speech coding schemes can 

be represented in this way. Analysis-by-synthesis linear predictive coders (MPLP, 
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RPE, CELP, etc.) [40] are very similar in that they too use an analysis-by-synthesis 

approach to estimate some of their parameters. 

So what are we trying to accomplish with acoustic-to-articulatory mapping if true 

area-function recovery is unrealistic, and what we really are doing is feature matching? 

Like speech coders, we attempt to derive control inputs to a forward model to match 

a given utterance as closely as possible. But by using a forward model resembling 

human speech production, estimated control inputs are an articulatory representation 

of speech. 

Certainly, the closer our estimates are to the true area-function the better, but we 

assert that accurate area-function recovery is not necessary to produce useful articula- 

tory representations. For example, articulatory phenomena such as coarticulation can 

be observed without requiring accurate area-function estimates. Information about 

place and manner of articulation is more significant than pure measurements such 

as the cross-sectional area 2 cm behind the velum. For many applications, preser- 

vation of the articulatory "gestures", without the unnecessary burden of complete 

area-function specification, will be sufficient. 

What defines a good articulatory representation of speech? While we cannot yet 

answer this question, we suggest the following two properties as necessary conditions. 

1. An articulatory representation should vary in a slow, continuous manner. This 

requirement is a natural consequence of speech physiology. Articulators have 

mass and inertia, and are moved by muscles of finite strength. Therefore, their 

motion should be continuous. 
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2. An articulatory representation must be consistent in terms of place of articula- 

tion within and across different manners of articulation. For example, constric- 

tions for [s] should be located near constrictions for [n], [t], and [d]. Furthermore, 

constriction locations for alveolar sounds should be anterior of constriction lo- 

cations for velar sounds. 

The requirement of smoothly varying features is fundamental. Such features might 

be good for coding, allowing coarser sampling and better interpolation. Continuity 

is an even more significant requirement for consonants and makes articulatory repre- 

sentations a better descriptor for consonants. While many acoustic features of voiced 

sounds vary smoothly over time, no acoustic feature varies smoothly across obstruent 

consonants. Nevertheless, consonants are produced by smoothly moving articulators 

and therefore may be represented with smoothly varying articulatory representation. 

The consistency requirement defines the way in which an articulatory representa- 

tion must resemble true articulation. This resemblance is necessary in order to reveal 

many aspects of natural articulation that empower articulatory representations such 

as coarticulation and reduction. 

The feature-mapping philosophy redefines the acoustic-to-articulatory mapping 

task; rather than estimating true vocal-tract state and shape, acoustic-to-articulato- 

ry mapping is generating an articulatory representation of speech. While the purpose 

of acoustic-to-articulatory mapping is different, the engineering problem of acoustic- 

to-articulatory mapping is essentially unchanged. The same four research issues must 

be addressed, although the use of a non-ideal forward model can now be justified. 

For our purposes, this viewpoint defines our stance on the fourth issue, evaluating 

results. The acoustic-to-articulatory mapping of vowels and fricatives will be based on 
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the fulfillment the above two properties and the production of intelligible resynthesis. 

While very qualitative in nature, these measures are realistic to the challenges of 

fricative inversion. 
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CHAPTER 3 

ARTICULATORY SPEECH SYNTHESIS 

Before the acoustic-to-articulatory mapping problem can be studied, a forward 

synthesis model must be selected. The characteristics of the forward model have 

a great influence on the nature of the inverse mapping and affect the form of a- 

coustic-to-articulatory mapping solutions. Before the articulatory speech synthesizer 

used herein is described, the foundations of articulatory synthesis techniques will be 

discussed along with three general approaches to the problem, the assumptions and 

simplifications they make, and their effects on the inverse mapping problem. 

3.1    Articulatory Synthesis Foundations 

Articulatory synthesis techniques rely on many assumptions and simplifications 

to make the synthesis equations tractable and computable in reasonable time. As 

limiting as some of the assumptions are, reasonable synthesis performance still can 

be achieved. 

The first, very reasonable assumption is that of linear acoustic wave propagation. 

Linear acoustic wave propagation in the vocal-tract is described by the equations 

-L| + V.v = 0 (3.1) 
pc2 at 
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and 

where p(x, y, z, t) is the sound pressure, v(ar, y, z, t) is the particle velocity vector, p 

is the density of air, and c is the speed of sound in air. These three dimensional 

partial differential equations relate pressure and airflow. While it is possible to syn- 

thesize speech directly from Equations 3.1 and 3.2, the three dimensional simulation 

is extremely demanding computationally. Also, three dimensional information about 

the vocal-tract volume is not known accurately enough to utilize such precise calcu- 

lations. If plane wave propagation is assumed, the vocal-tract becomes equivalent to 

straight tube of non-uniform cross-sectional area and the wave equation reduces to 

one dimension. 

1  d(p(x,t)A(x,t))     du(x,t)      dA(x,t) 
pc2 dt dx dt (     ' 

d(u(x,t)/A(x,t))     dp(x,t) 
P dt dx {    j 

u(x,t) is the air volume velocity in the tube and A(x,t) is the cross-sectional area 

of the tube. The plane wave assumption is valid as long as the acoustic wavelength 

is sufficiently larger than the cross-sectional dimension. This is generally true up to 

about 4kHz. 

Losses are present in the vocal-tract due, in part, to viscosity, thermal conduc- 

tivity, and wall vibration. Incorporating these losses into the one dimensional wave 

equations improves modeling accuracy. Although losses may be added into the one 

dimensional wave equations in many ways, those details will not be discussed here. 
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For computational purposes, the continuous one dimensional vocal-tract model 

must be sampled and discretized into a concatenation of tubes of differing cross- 

sectional area. Figure 3.1 depicts the simplification of the three dimensional vocal- 

tract volume to a discretized one dimensional tube model. 

A number of articulatory synthesis techniques have been proposed for simulating 

the acoustic propagation of sound in the vocal-tract. The following three broad classes 

of articulatory synthesis techniques that use the above one dimensional linear plane 

wave propagation assumptions will be briefly described. 

1. direct numerical evaluation of equations 3.3 and 3.4. 

2. time domain simulation using wave-digital-filters (WDF), also known as the 

Kelly-Lochbaum model. 

3. frequency domain simulation. 

The first technique is the direct numerical evaluation of the wave equation. Runge- 

Kutta or a similar method is used to simulate the system. For stability the step size 

must be small which makes the simulation computationally intensive. Bocchieri [7] 

is a good example of this approach. 

The second technique is also a time-domain technique and was first proposed 

for speech synthesis by Kelly and Lochbaum [41]. The technique uses a line analog 

model to approximate the vocal-tract as an transmission line. The Kelly-Lochbaum 

model, also known as a wave digital filter (WDF) or as a digital waveguide filter, 

is a discrete structure consisting of bidirectional delay lines (waveguides) and delay 

elements connecting adjacent sections [6]. It is a very popular choice for articulatory 

synthesis because of its speed. It can simulate time-varying area-functions but does 
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Figure 3.1: The simplifying reduction of a three dimensional vocal-tract volume to 
a discretized one dimensional tube model: (a) straight tube of non-uniform cross- 
sectional area, (b) discretized version of (a), (c) area-function of continuous and 
discrete tube models. 
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not allow frequency dependent losses. A drawback to the model is that it requires 

tube segments of a fixed length, causing continuous variation in vocal-tract length to 

be represented as discontinuous changes. 

Frequency domain models can also be used for articulatory synthesis [5, 8]. As 

terminal analog models of the vocal-tract, they are easily expressed in terms of 2x2 

"chain matrices". An advantage of the frequency domain approach is the conve- 

nience of modeling vocal-tract losses and radiation effects in the frequency domain. 

Frequency domain representations are much more convenient for acoustic-to-artic- 

ulatory mapping since most of the features used for comparisons are based in the 

frequency domain. 

Acoustic-to-articulatory mapping schemes could be developed for any of these 

synthesis schemes, but no one acoustic-to-articulatory mapping scheme would work 

for all synthesizers. The assumptions and associated drawbacks of each method re- 

quire unique processing. For our the acoustic-to-articulatory mapping investigations, 

a frequency domain synthesizer will be used. The synthesizer is not the fastest in com- 

putation speed but it does not suffer from the discontinuities encountered in WDF 

synthesizers. Since optimization will be done with frequency domain speech features, 

the frequency domain synthesis approach is quite appropriate. 

3.2    An Articulatory Speech Synthesizer 

The articulatory speech synthesizer implementation used herein is a hybrid time- 

frequency domain synthesizer based on the synthesizer of Sondhi and Schroeter [8]. 

The hybrid synthesizer attempts to model aspects of speech production in their most 

natural form by having the vocal-tract represented in the frequency domain and the 
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glottal-source simulated in the time domain. The two representations are interfaced 

via an inverse Fourier transform and discrete convolution. The synthesizer includes 

a nasal branch with sinus cavities, coupled to the vocal-tract by a variable velum 

opening area. Fricative noise can be injected at the glottis for aspirated sounds 

or within the vocal-tract for fricative sounds. The glottal-source simulation uses a 

model of vocal-cord oscillation and is capable of reproducing many of the interactions 

between source and tract. The synthesizer is capable of producing all of the sounds 

of English. 

The synthesizer implementation is written in C and uses signal processing and file 

management routines from Entropie Signal Processing System (ESPS) libraries. The 

synthesizer can produce detailed "monitor" files during synthesis that depict aspects 

of synthetic production including the source simulation, the fricative simulation, and 

transfer functions. The synthesizer can be driven by raw area-functions created using 

an area-function editor or by an articulatory model. Maeda's linear articulator model 

(LAM) [42] and Mermelstein's model [20, 43] have be implemented for this purpose. 

The synthesizer has been integrated into MATLAB using MATLAB's mex-file inter- 

face. The entire synthesizer, divided into a series of stages, may be accessed through 

MATLAB calls. This allows the state of the synthesizer to be examined and manip- 

ulated at any point. This is conducive to testing and prototyping new production 

models and fine tuning internal synthesizer parameters. An interactive graphic editor 

has been created using these MATLAB calls to assist hand synthesis of speech using 

the synthesizer. 

The remaining discussion about the synthesizer reviews the primary aspects of its 

operation, but is not meant as a complete specification of its construction.  Details 
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unique to the synthesizer or relevant to issues discussed elsewhere in this thesis, such 

as the fricative production model and constriction resistance, are described in de- 

tail. For a more thorough description of a hybrid time-frequency domain articulatory 

speech synthesizer implementation, see [8]. 

3.2.1    Acoustic Model 

Each tube section in an acoustic tube model may be represented in the frequency 

domain as a two-port function described by a chain matrix. 

■PoutM 

U0ut(w) 

A(u)   B(u) 
C{J)   D(u) 

Pin{u) 
Uin(uj) 

= K{u>) Pin(u) 
Uin(uj) 

(3.5) 

This chain matrix relates pressure, Pout(u), and flow volume-velocity, Uout(uj), at 

the tube output to pressure, Pin(w), and flow volume-velocity, Uin(iv), at the tube 

input. The elements, {A(CJ),B(U), C(u), D(UJ)}, are frequency domain quantities that 

incorporate vocal-tract losses. They are a function of the length and cross-sectional 

area of the tube section. Equations for the calculation of these variables along with 

some explanation of their derivation are available in [8]. For the remainder of this 

chapter, the frequency argument of these elements will be dropped for convenience. 

Figure 3.2 depicts the two-port representation of a tube section. 

An iV-tube model is described by the ordered product of the chain matrices of 

each tube section. 

N 

Kmube — U Ki = A-Ntube     BNtube 

CNtube     D^tube 
(3.6) 

From this chain matrix, the terminal characteristics of the entire tube model termi- 

nated by an impedance, Z?, can be calculated. The tube model transfer function 
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Figure 3.2: A tube section and its two-port functional representation. 
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IS 

rj _ Pout  _  ZT  ,       v 
ilNtube - jj- - -. p; =- (3.7) 

Uin ^-Ntube ~ ^Ntube^T 

and the impedance seen at the input of the tube model is 

ry    _ DmubeZr — Butube ,0 „N. 
Z™ ~ -j ^ 5~- [O-O) 

■n-Ntube — ^Ntube^T 

In a similar manner the transfer functions Uout/Uin, Pout/Pin, and Uout/Pin can be 

calculated. 

Within the articulatory speech synthesizer, the functional description of the JV- 

tube vocal-tract representation is the chain matrix, Ktract, which is calculated from the 

individual tube section chain matrices using Equation 3.6. While Ktract is sufficient to 

represent the vocal-tract filter, it is necessary to break the vocal-tract into a number 

of sections in order to couple the nasal-tract and insert frication. Figure 3.3 depicts 

the block circuit model assumed within the synthesizer. The vocal-tract is terminated 

with a lip radiation impedance, Z[ip, and is divided into four regions: 

1. The pharyngeal region consists of tube sections between the glottis and the 

velum and is represented by the chain matrix, KQ- No closures are allowed in 

this region, i.e. the cross-sectional areas of each tube must be greater than zero. 

2. The velar region consists of tube sections between the velum and the smallest 

constriction forward of the velum. If there is a constriction that produces frica- 

tion, the velar region terminates at that constriction. If there is a complete 

closure in the vocal-tract, the velar region terminates at the closure. The chain 

matrix, Kc, describes the velar region. 
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Figure 3.3: Acoustic model used in the articulatory speech synthesizer. 
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3. The fricative region consists of tube sections between the constriction and frica- 

tive noise source and is represented by the chain matrix, KS- Even if frication 

will not be produced by the vocal-tract configuration, a frication noise source 

must be assumed somewhere between the constriction and the lips. 

4. The forward region consists of tube sections between the fricative noise source 

and the lips. The chain matrix, KL, describes this region. 

The nasal-tract is also represented as a tube model terminated by a nostril ra- 

diation impedance, Znost. The describing chain matrix is KN. While not depicted 

in Figure 3.3, the nasal branch also includes a Helmholtz resonator representing the 

sinus cavities whose effects are included in KN. Coupling between the nasal-tract and 

vocal-tract is controlled by a velum area parameter. 

The terminating impedances, Znost and Zlip, represent the effects of radiation at 

the nostril and lips respectively. This radiation is modeled as that of a pulsating 

sphere with a radius equal to that of the opening as suggested by Flanagan [5]. 

The chain matrix from the glottis to the constriction is 

Kconst = KCRKCKCNKG (3.9) 

where KCR is a special matrix that inserts a impedance, Zconst, at the constriction, 

KCR = 
*■ ^const 

0        1 (3.10) 

and KcN is a special matrix that accounts for coupling with the nasal branch, 

K. cN 
1 0 

/      1'R'na.sal 

(3.11) 

Zinnasal is the input impedance to the nasal-tract seen at the velum. When the velum 

is closed, ZiTlnasal is infinite and KCN reduces to the identity matrix. The chain matrix 
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from the glottis to the lips is 

Ktract = KLKsKconst. (3.12) 

The chain matrix from the glottis to the nostrils is 

Knasal = KNKcVKG, (3.13) 

where KcV is vocal-tract coupling matrix analogous to KcN. 

3.2.2    The Source Model 

The glottal-source model represents the combined action of the lungs, trachea, 

and vocal-folds in regulating and modulating the flow of air into the vocal-tract. A 

variety of source models have been proposed with variations in the degree of physi- 

ological accuracy that range from modeling airflow in purely descriptive terms (FO, 

tilt, open quotient, etc.) to detailed physiological models of vocal-fold vibration and 

acoustomechanical coupling. The articulatory speech synthesizer presently employs 

the Ishizaka-Flanagan two-mass model [44], a model of some physiological detail. In 

this model, each vocal-fold is modeled by two coupled vibrating masses as in Fig- 

ure 3.4(a). Symmetry is assumed between the two vocal-folds so that the motion of 

only one fold need be calculated. The time-varying positions of the two masses define 

the glottal cross-sectional area which affects the acoustic resistance and inductance of 

the glottal channel. Glottal volume velocity is calculated from the equivalent circuit 

diagram of Figure 3.4(b) given the vocal-tract input impedance, Zin. 

There are three time-varying input parameters to the two-mass model: lung pres- 

sure, Ps, which corresponds roughly with amplitude of voicing; glottal tension factor, 

q, which can be related to fundamental frequency; and glottal rest area, Ag0, which 

37 



Pharynx 

1 
Tfe ITfe 

m, m, 

I 
1 

Trachea 

(a) 

'S ' Ug, q, Ag0 two-mass 
model 

© 
lungs 

Ag1  ,   A g2 

A^^p^ 
R. -lot 

vocal cords 

Zin 

voca/ fracf 

(b) 

Figure 3.4: Ishizaka-Flanagan two-mass mechanical model for vocal-fold motion and 
its equivalent circuit diagram for airflow through the glottis. 
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specifies the separation of the vocal-folds with no airflow and helps to control the 

onset and offset of voicing. 

The glottal-source model produces a glottal volume velocity waveform, ug(t), 

which acts as the input to the vocal-tract filter, HVT, and nasal-tract filter, HN. HVT 

and Zin are calculated from the chain matrix Ktract using Equations 3.7 and 3.8, re- 

spectively. HN is calculated from Knasai. Synthesis output is produced by calculating 

the vocal-tract and nasal-tract transfer functions, adding them together, generating 

an impulse response function using the inverse Fourier transform, and convolving the 

impulse response with the glottal volume velocity waveform. Impulse responses are 

interpolated to produce smooth transitions between adjacent synthesis frames. Note 

that the vocal-tract and glottal-source models are continuous domain descriptions, 

therefore discretization is necessary in the implementation. 

3.2.3    The Constriction Impedance 

As the cross-sectional area of the constriction is decreased, the resistance to flow 

through the constriction is increased. The linear acoustic equations do not ade- 

quately model this effect when the constriction area gets small. Therefore, a dis- 

crete impedance, Zconst, has been inserted between the velar and fricative regions 

of Figure 3.3. This impedance is necessary to produce a pressure drop across the 

constriction which helps limit flow during fricatives and stops. The location of this 

impedance corresponds to the smallest constriction area in the vocal-tract. Only one 

constriction small enough to require this extra impedance term is assumed. 

The constriction impedance includes a resistance and an inductance term repre- 

senting losses at the contraction and expansion of the constriction. The constriction 
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impedance is a function of constriction cross-sectional area, Ac, length, Lc, and the 

rate of flow through the constriction, Uc. 

K-const —   ~.2 (3-14) 

_ PLC 
J-zconst — —.— (3.15) 

Since the constriction resistance is flow dependent, it cannot be incorporated into 

acoustic transfer functions. Our solution is to approximate the constriction resistance, 

over each frame, by a fixed resistance that is a function of an (estimated) average flow 

for that frame. The differential equations of the two-mass model are too complicated 

to solve for average flow, so an approximate solution must be found. If we assume 

steady state flow, i.e., no vocal-fold motion, flow through the glottis will equal flow 

through the constriction. In this case, lung pressure, Ps, must equal the pressure drop 

across the glottis plus the pressure drop across the constriction, 

Ps = Ug{Rg + Ramat). (3.16) 

Rg, the resistance at the glottis, may be calculated directly from the two-mass model 

equations for glottal resistance (see Equation (8) of [44] or Equation (4) of [8]) by 

setting the glottal rest area of both masses equal and assuming no elastic expansion 

of the vocal-folds. By solving Equation 3.14, Equation 3.16, and the glottal resistance 

equation simultaneously, a value for flow may be found that matches, at least phe- 

nomenologically, the relation between constriction resistance, flow at the constriction, 

constriction area, and the glottal-source parameters q, Ag0, and Ps. 

Figure 3.5(a) shows an example of the constriction resistance approximated using 

the above procedure as a function of constriction area and glottal rest area. This is 
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Figure 3.5: Comparison of approximated and optimal average constriction resistance 
for glottal tension, q = l, and lung pressure, Ps = 8. 

compared to the optimal values for Rconst in Figure 3.5(b) obtained using an opti- 

mization procedure. Clearly, the approximated and optimal values are quite similar. 

The effect of approximation errors is better seen in the plots of Reynolds number at 

the constriction in Figure 3.6. Reynolds number is directly related to the amount 

of turbulence (frication) generated at the constriction. The high ridge in each plot 

is roughly the boundary between voicing and non-voicing, with voicing occurring for 

larger values of Ac. The higher, sharper ridge of the optimal Reynolds number plot 

results from the elastic expansion of the vocal-folds, which is not included in the 

approximation. Since we are already approximating a time-varying, flow-dependent 

resistance with a constant resistance, it is not known how significant accuracy is on 

the synthesis. If greater accuracy is needed, a table lookup/interpolation procedure 
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Figure 3.6: Comparison of approximated and optimal Reynolds number at the con- 
striction for glottal tension, q = I, and lung pressure, Ps = 8. 

or artificial neural network can be used to more closely reproduce the values derived 

by optimization. 

3.2.4    The Fricative Model 

In addition to the synthesis of voiced sounds as described above, the synthesizer is 

capable of producing stop, fricative and aspirated consonants. For stops, the buildup 

and release of pressure during stop closures is accomplished by the buildup of supra- 

glottal pressure within the time-domain source simulation. For fricatives and bursts 

following stops, frication noise is injected at the appropriate location in the vocal- 

tract and is amplitude modulated by flow rate through the constriction. Aspiration 

is injected at the glottis much like frication is injected within the vocal-tract. 
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Frication noise is produced by airflow passing through a constriction in the vocal- 

tract downstream of the glottis. A sufficiently small constriction causes laminar flow 

to become a turbulent jet which acts as a noise pressure source. In some situations, 

the turbulent jet impinges on an obstacle downstream of the constriction such as 

the alveolar ridge, teeth, or lips, producing another noise pressure source with an 

amplitude greater than the one at the constriction. Within the synthesizer, only a 

single turbulence producing constriction is assumed, which must be located forward 

of the velum. The noise pressure source resulting from the constriction can be located 

anywhere between the constriction and the lips. The three sections within the oral- 

tract of the synthesizer as shown in Figure 3.3 are necessary so that the constriction 

and the frication noise pressure source can be independently located. 

The frication pressure source is modeled as a random white Gaussian noise source 

whose amplitude is a function of airflow through the constriction. More specifically, its 

amplitude is related nonlinearly to airflow via the Reynolds number at the constriction 

as follows, 

Pfridt)   = Gfricrandom(t)(Re2(t)-Re2
thresh),   Re > Rethresh 

= 0' Re < Rethresh /o 17\ 

where Gfric is an empirically determined gain term and random is a zero-mean, 

uncorrelated Gaussian random variable. Reynolds number is a dimensionless quantity 

related to the degree of turbulence in the flow of a fluid. Its squared value, Re2, is 

defined as 

= *£»££_ (318) 
•KfJ2     Ac 

V ' 
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Figure 3.7: Block circuit diagram of a frequency domain fricative model. 

where Ac is the cross-sectional area at the constriction and uc(t) is the flow through 

that constriction. Frication occurs only when air velocity through the constriction is 

above the threshold, Refhresh. 

Flow at the constriction is obtained by filtering glottal flow, ug, with the transfer 

function, Hv = Uc/Ug, corresponding to the chain matrix Kconst. Fricative output 

at the lips is produced by filtering the fricative noise pressure source waveform, PfriC, 

through the transfer function HF = Plips/Pjsource. The relation between the frication 

noise pressure, Pfric, and sound pressure at the lips, Pnps, is a function of the vocal- 

tract cavities both in front of and behind the pressure source as shown in Figure 3.7. 

The front cavity portion of the vocal-tract is from the frication source to the lips 

and has frequency characteristics described by the chain matrix KL. The back cavity 

extends from the glottis to the frication source and is described by the chain matrix 

Kfric = KsKconst. The presence of the back cavity produces zeros in the fricative 

spectrum. Given KL and Zlip, the front cavity transfer function Tfric = U0/Ueff and 

input impedance Zfront can be calculated using Equations 3.7 and 3.8. Given Kjric 
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and Zgiottis, which is tuned for no reflection at the glottis, Zback can be calculated. 

The relation between the frication noise source and sound pressure at the lips is easily 

derived although it may be surprising that the poles and zeros of Tfric are not the 

poles and zeros of the fricative transfer function. 

3lE- - 7       U°    Ueff  -        TfricZljp 
p— - Jiipjj—p— - -= —=  (3.19) 
rfric Ueff *fric        ^back + A front 

3.2.5    Articulatory Models 

While not a part of the acoustic synthesizer, articulatory models are an important 

part of articulatory speech synthesis. They model speech articulators such as the 

tongue, lips and jaw in order to generate reasonable area-functions using a small 

number of parameters. 

A number of articulatory models depict the shape of the vocal-tract in the mid- 

sagittal plane based on x-ray photography. Two such articulatory models are presently 

available as a front-end to the articulatory speech synthesizer: Maeda's linear artic- 

ulator model (LAM) [42] and Mermelstein's model [20, 43]. 

Figure 3.8 displays the linear articulator model. It models vocal-tract shape in 

the mid-sagittal plane using seven parameters that are based on a factor analysis 

of 400 x-ray profile images. The statistical analysis produced four components that 

can explain 98% of the variance in the observed profiles. Three of the four factors 

describe tongue shape and can be related to movements by the tongue body, the 

tongue dorsum, and the tongue apex. The fourth factor controls jaw angle. Three 

additional parameters control lip height, lip protrusion, and larynx height. 

Figure 3.9 displays Mermelstein's model. It depicts vocal-tract shape in the mid- 

sagittal plane by modeling speech articulators such as the tongue, lips and jaw with 
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Figure 3.8:   A vocal-tract configuration produced by the Maeda linear articulator 
model (LAM). 
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Figure 3.9: A vocal-tract configuration produced by the Mermelstein model. 
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geometric shapes. Mermelstein's model is controlled by ten parameters which specify 

hyoid position, (hx, hy), tongue body center in polar coordinates, (rtb, 9tb), tongue tip 

location relative to the tongue body in polar coordinates, (rtt,0tt), jaw angle, 9jaw, 

lip height, hnp, lip protrusion, pup, and nasal coupling, Acoup. 

For both models, area-functions are produced by converting mid-sagittal widths 

to cross-sectional areas using a mapping of the form 

x(l) = a(l)width(i)M\ (3.20) 

where a(l) and ß(l) are fixed functions of location within the vocal-tract and are 

determined from physiological measurements. 

Mermelstein's model has more freedom to model consonant configurations than 

the LAM. Unfortunately, extreme values of input parameters to Mermelstein's model 

can produce very unnatural looking configurations and occasionally cause the model 

to break down. It is difficult to predict which input parameters will produce these 

bad configurations. Limiting the range of individual parameters to avoid these con- 

figurations overly restricts the model and prevents many valid configurations from 

being produced. 
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CHAPTER 4 

STUDY OF THE INVERSE TRANSFORMATION FOR 
VOWELS AND FRICATIVES 

4.1    Introduction 

The successful recovery of articulation from acoustics requires some understand- 

ing of the acoustic-to-articulatory transformation. By investigating the many-to-one 

mapping problem, the effects of model mismatch, and the avoidance of local-minima 

in optimization, we can identify reasonable heuristics for inverse mapping and get 

some idea of the potential accuracy of acoustic-to-articulatory mapping solutions. 

Much can be learned by studying the acoustic-to-articulatory transformation for 

a single frame of speech. In this static problem, a single articulatory configuration 

is estimated from a segment of (presumably) steady-state speech. The more general 

dynamic problem of acoustic-to-articulatory mapping requires the estimation of an 

articulatory trajectory and is considered in Chapters 5 and 6. 

This chapter, as well as the remaining chapters, will use a restricted definition of 

voiced speech that refers to only vowels and glides, without liquids or any fricated, 

aspirated, nasalized, or plosive sounds. Most existing acoustic-to-articulatory map- 

ping algorithms are restricted to this limited class of voiced speech.  The restricted 
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definition simplifies the distinction between fricated speech, which can be voiced, and 

voiced speech, which does not include fricatives. 

In this chapter, we describe a technique known as linked-codebooks for the acous- 

tic-to-articulatory mapping of static sounds. We then use this procedure to study the 

inverse transformation. Since fricative inversion is the primary thrust of this thesis, 

special attention will be given to fricative linked-codebooks and fricative acoustic-to- 

articulatory mapping. The results will be used to motivate the approaches taken in 

Chapters 5 and 6 for building dynamic acoustic-to-articulatory mapping systems for 

utterance containing both voiced and fricated sounds. 

4.2    Linked-Codebooks 

In the static formulation of the acoustic-to-articulatory mapping problem, we wish 

to infer an articulatory configuration from a single frame of speech. As described in 

Chapter 2, an analysis-by-synthesis approach is commonly taken to find the artic- 

ulatory configuration whose acoustic result best matches the original speech. This 

may be formulated as a multidimensional, constrained optimization problem. In all 

optimization problems, the avoidance of sub-optimal solutions, or local minima, is a 

significant issue. Many researchers have reported that optimization techniques have a 

better chance of finding a global (or near optimal) solution if they start close to that 

solution. One approach for reducing the local minima problem is to start the optimiza- 

tion process at the optimized solution of the previous frames, with the rationalization 

that articulatory configurations close in time should also be close in position. Of 

course, choosing a starting point for the first optimization remains a problem. This 
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motivates the following rather popular and successful way of selecting the starting 

point for optimization using lookup tables called linked-codebooks [12, 15]. 

Let $ be a C entry linked-codebook consisting of articulatory vectors, pn,n € 

[1,C], and their corresponding acoustic consequences, q/eature,n, where feature is a 

label identifying the type of acoustic feature representation used. More than one 

acoustic feature may be linked to the same articulatory vector. Whenever possible, 

the feature subscript will be dropped for convenience. Notationally, the articula- 

tory vector, p„, and the acoustic features, qn, of the nth linked-codebook entry, or 

codeword, are accessed as follows. 

Pn = $.(n) (4.1) 

Qn = $ featured) (4.2) 

Codebook lookup entails finding the codeword whose acoustic feature best matches 

that of the speech waveform, s, according to some distance measure, D(s, $/eature(n)). 

The codebook index of the winning codeword is 

n* = argmin£>(s, $ featured)) (4.3) 

and the best articulatory configuration is $*(n*). 

Linked-codebooks are used to seed optimization in inverse mapping schemes. Us- 

ing codebooks in this manner has a two-fold purpose. First, it helps alleviate the 

problems of local minima in optimization by (hopefully) starting the optimization 

close to the correct solution. Secondly, linked-codebooks can provide the N best fits, 

which, with continuity constraints or dynamic programming, can be used to elimi- 

nate some of the unreasonable non-unique solutions. For our analysis purposes, the 
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linked-codebook may be thought of as a very coarse approximation of the inverse 

function. 

4.2.1    Linked-Codebook Generation 

To generate a linked-codebook, the parameter space of the articulatory model 

must be sampled in some logical fashion. Sampling is followed by pruning to remove 

undesirable configurations, such as ones with complete closure, and to get reason- 

able coverage of the articulatory and acoustic spaces with fewer codewords. Finally, 

acoustic features are calculated for each configuration. Unless otherwise noted, the 

acoustic features extracted are a function only of the vocal-tract shape, so linked- 

codebook sampling does not include parameters controlling the glottal-source. While 

source-tract interaction exists and is modeled within the synthesizer, its effect in 

voiced sounds is ignored for practical reasons. Source-tract interaction for fricated 

sounds is more significant, so some fricative codebooks may require sampling of source 

parameters. 

In sampling the articulatory space, we want to get the most accurate represen- 

tation of the acoustic-to-articulatory transformation possible with a finite number 

of samples. This is quite a challenge given the high dimensionality of the articu- 

latory space and relatively small number of samples that can be practically stored 

and retrieved. Figure 4.1 displays the number of samples required to sample an ar- 

ticulatory space of iV dimensions on a uniform grid with k samples per dimension. 

Clearly, as N increases, the number of samples necessary to keep the same sampling 

density increases exponentially. For example, the LAM, a rather simplistic model of 

merely seven dimensions, requires over 16000 samples to produce a sampling density 
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of 4 samples per dimension. Mermelstein's model, a slightly more detailed model 

with nine dimensions, requires over 260000 samples to achieve the same sampling 

density. Therefore, while more detailed articulatory models provide us with greater 

freedom and accuracy in controlling the vocal-tract shape, their increased dimension- 

ality limits the effectiveness of acoustic-to-articulatory mapping procedures, including 

linked-codebook lookup. 

The maximum allowable size of the linked-codebook is limited by three issues: 

codebook access (lookup) time, creation time, and memory consumption. Since this 

study is exploratory in nature, access time and creation time are less significant and 

the size of the codebook in memory becomes the dominant constraint. By keeping 

the size of linked-codebooks less than 5 Mb, and using an efficient method of encod- 

ing articulatory configurations and acoustic features, any codebook with fewer than 

100000 entries is reasonable in size. 

With such a relatively small number of samples to deal with, it is important to 

make sure that all regions of the articulatory space get adequate representation and 

that the codewords are used efficiently. This is accomplished with careful sampling, 

classification, and pruning. Sampling occurs over the region defined by the range 

of reasonable values for each parameter of the articulatory model. A number of 

strategies can be taken for adequately sampling this region. Sampling on a uniform 

(and logarithmic) grid was used by Atal [12] to generate a lookup table for vowels using 

a four parameter articulatory model. Random sampling [45, 39], typically uniformly 

distributed, is a popular alternative that appears to have an advantage, for higher 

articulatory dimensions, over sampling on a grid. For example, two articulatory 

codebooks with roughly 2000 entries each were generated: one by sampling on a 
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uniform grid with four samples per dimension, and the other by uniformly-distributed 

random sampling. Figure 4.2 shows a scatter plot for each codebook of the minimum 

constriction area and its location for each sample. By sampling uniformly on a grid, 

the full range of constriction locations and areas are not well represented. Random 

sampling does a much better job of evenly covering the articulatory space. Another 

approach to sampling the articulatory space taken by Larar et al. [46] is to sample 

paths connecting a set of reasonable "root" configurations to generate their codebook 

entries. With this "root-shape interpolation" method of sampling, configurations that 

are more likely to be used in real speech are more densely sampled, and unnatural 

or improbable regions of the articulatory space are avoided. The difficulty of this 

approach is in identifying a set of reasonable configurations that sufficiently cover the 

relevant articulatory space and don't leave any "holes". 

For many articulatory models, including the Mermelstein model and the Maeda 

LAM, it is difficult to determine beforehand the nature of the vocal-tract shape for 

a given set of articulatory model parameter values. Therefore, each sample must 

be classified as a vowel, fricative, closed, non-English, or invalid configuration by 

examining the area-function it produces. Invalid configurations are those that produce 

an error condition within the articulatory model and correspond to physiologically 

impossible configurations. Closed configurations are any configuration with at least 

one complete closure (zero cross-sectional area) in the vocal-tract. The remaining 

three classes are distinguished by the location and size of the smallest constriction 

in the vocal-tract. Configurations with a minimum cross-sectional area greater than 

some threshold, Avowei, are considered vowels. Configurations with a minimum cross- 

sectional area less than some threshold, Afric, located anterior to the velum are 
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considered fricatives. The synthesizer, in its current form, can only produce frication 

for constrictions in front of the velum. Therefore, all configurations with a minimum 

cross-sectional area less than Avowd, located behind the velum are considered invalid. 

This restriction is not a limitation for many languages, such as English, which do not 

use uvular or pharyngeal obstruents. 

There is some ambiguity in the definition of a vowel or fricative configuration. 

Depending on the amount of airflow through the constriction, the same configuration 

could be perceived as a vowel or a fricative.  That is why two separate thresholds, 

Avowel and Afric, are provided. Generally, Avowel is less than Afric allowing for some 

overlap in vowel and fricative definitions.   Physical measurements of constriction 

area in talkers is difficult to obtain.   Based on reasonable values for pressure and 

flow at the constriction during frication, Stevens [47] estimated constriction areas 

in the range of 0.1-0.2 cm2.   Stevens also points out that high vowels, such as [i] 

and [u], can have constriction areas less than 0.3cm2.   Similar estimates by Badin 

et al. [48], but with more careful measurements of flow and pressure drop across the 

constriction, found constriction areas of 0.13 cm2, 0.08 cm2, and 0.15 cm2 for [f,s,f] 

respectively. Badin et al. also measured constriction areas from electropalatographic 

(EPG) data, estimating constriction areas of 0.02-0.04 cm2 for [s] and 0.07-0.2 cm2 

for [J]. An explanation for the discrepancy between the two sets of measurements is 

unavailable. Narayanan et al. [33] used magnetic resonance imaging (MRI) to measure 

the "static" 3-D geometry of four talkers producing eight English fricatives.  They 

measured constriction areas as small as 0.098 cm2 and as large as 0.299 cm2. The above 

estimates give us a reasonable idea of the boundary between vowels and fricatives. 

Therefore, 0.2 cm2 will be considered the boundary between vowels and fricatives. For 
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Class Maeda Mermelstein 
Total 84693 (100.0%) 176706 (100.0%) 
Vowels 35088 (41.4%) 34739 (19.7%) 
Fricatives 9761 (11.5%) 8199 (4.6%) 
Both Vowel & Fricative 4912 (5.8%) 5261 (3.0%) 
Closed 33657 (39.7%) 108433 (61.4%) 
Non-English 1275 (1.5%) 12636 (7.1%) 
Invalid 0 (0.0%) 7438 (4.2%) 

Table 4.1: Classification of samples after uniformly distributed random sampling of 
the LAM and Mermelstein model articulatory spaces to generate 40000 entry vowel 
codebooks. {Avowd = Ainvaiid = 0.15 cm2 and Afric = 0.3cm2). 

purposes of resolving ambiguity and overlap between vowels and fricatives, Avowei will 

be set to 0.15 cm2 and AfriC set to 0.3 cm2. Some additional tuning may be necessary 

based on the threshold of frication for the synthesizer. 

In generating a vowel codebook of 40000 samples, the articulatory space of the 

Maeda LAM was sampled 84693 times. Table 4.1 shows the the number of configura- 

tions classified in each category along with the percentage of the total. Classification 

was performed with Avowei = Ainvaii({ — 0.15 cm2 and Ajric = 0.3 cm2. Clearly, closed 

configurations are a significant portion of the total number of samples. This sug- 

gests that the range of model parameters over which we sampled may be larger than 

necessary. But the set of non-closed configurations is not necessarily a convex one, 

therefore, it is probably best to overestimate the parameter range. Computationally, 

sampling and classification of 100000 samples takes about 3 hours on a 60 MHz Pen- 

tium. Therefore, we can accept low percentages for classes such as fricatives, and 

still generate rather large codebooks in about a day. It is interesting to note that for 

the Maeda LAM, approximately 29.5% of the non-closed configurations are capable 
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of producing frication. For comparison purposes, Table 4.1 shows similar statistics 

for generating another vowel codebook of the same size using Mermelstein's model. 

Mermelstein's model is more sensitive to extreme values of its input parameter values 

and, therefore, more configurations caused errors and were labeled invalid. Of the 

non-closed configurations, 27.9% are capable of producing frication. 

A number of procedures have been proposed to produce a more efficient coverage of 

the acoustic-to-articulatory mapping by the codebook using clustering or pruning [12, 

26, 46]. A procedure by Schroeter et al. [45] offers an effective and straightforward 

approach to improve codebook efficiency and coverage. The first three formants of 

each potential codeword are mapped onto a logarithmically spaced 3-D grid of formant 

frequency bins. Potential codewords are accepted into the codebook only if there are 

no geometrically similar codewords in the same formant frequency bin. Articulatory 

model configurations X and Y are geometrically similar if the distance 

d9eo = ^ E(Xi ~ Yi)2 (4.4) 

is less than some threshold. 

After sampling, classification, and pruning, we should have a reasonable represen- 

tation of the articulatory side of the acoustic-to-articulatory mapping. The linked- 

codebook is completed by generating for each codeword, the corresponding acous- 

tic features produced by that codeword's articulatory configuration. The choice of 

acoustic feature has a significant effect on the codebook's ability to perform an ef- 

fective acoustic-to-articulatory mapping. A good feature is sensitive to perceptually 

significant differences, yet insensitive to glottal variation and speaker dependent dif- 

ferences. The type of acoustic feature used depends on the algorithm used and the 
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type of speech being analyzed. Therefore, the issue of acoustic feature selection will 

be further addressed as it arises in later sections. 

4.3    Linked-Codebook Lookup for the Inversion of Static Vow- 
els 

Figure 4.3 shows two examples of static vowel inversion using a linked-codebook on 

32 ms, hamming windowed, voiced tokens taken from running speech. The codebook 

contains 44509 entries pruned from an original 180000 entries and uses the LAM 

without scaling. The acoustic feature used is the weighted FFT cepstral distance of 

Meyer et al. [30]. Clearly, linked-codebook lookup alone is often sufficient to get a 

reasonable acoustic and articulatory fit. Iterative optimization can follow to improve 

the result if desired. 

While the match between the synthetic transfer function and the FFT of the 

signal is close in Figure 4.3(b), the corresponding articulatory configuration has a 

lip opening for the labial, /w/, at 3.9 cm, that could be larger than desired. If the 

top three linked-codebook fits are considered, as in Figure 4.4, we find two alternate 

solutions with smaller lip openings, and similar acoustics. This example illustrates 

the power of linked-codebooks for acoustic-to-articulatory mapping. The availability 

of multiple reasonable solutions allows for further processing, especially for dynamic 

acoustic-to-articulatory mapping, to improve the final result. 

4.3.1    Vowel Linked-Codebooks 

A great deal of work has been reported on the acoustic-to-articulatory mapping 

of vowels, so we have not pursued it in depth, preferring to focus our attention on 

fricatives. We would like to point out a few issues that are not apparent in the 
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Frequency (Hz) 
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(a) Acoustic and articulatory fit for /i/ of "year". 

1000 2000 3000 
Frequency (Hz) 

4000 

(b) Acoustic and articulatory fit for /w/ of "were". 

Figure 4.3: Results of linked-codebook lookup on two voiced tokens taken from run- 
ning speech. 
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Figure 4.4: Results of linked-codebook lookup: top three acoustic and articulatory 
fits for /w/ of "were". 

above example, but are unavoidable practical issues in acoustic-to-articulatory map- 

ping for both vowels and fricatives. All are directly or indirectly related to the model 

mismatch problem. 

In the acoustic-to-articulatory mapping of voiced sounds, the vocal-tract shape 

is typically estimated independently of the glottal-source. This is accomplished by 

assuming that an appropriately processed speech spectrum represents the vocal-tract 

transfer function. Separating the source from the vocal-tract in this way is a common 

approach in speech processing. However, the glottal-source does have an effect on 

the speech spectrum. Variations in fundamental frequency can bias estimates of the 

vocal-tract transfer function, especially at low frequencies. Also, the overall spectral 

slope of the glottal waveform is difficult to separate from the vocal-tract transfer func- 

tion. Our acoustic-to-articulatory mapping routines were found to be very sensitive 
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to this spectral "tilt". If the spectral tilt did not match that of the synthesizer's 

"voice", optimization energy would be spent matching tilt, rather than more percep- 

tually significant aspects. This problem has been observed by other researchers as 

well [14, 30]. One approach to minimizing the effect of glottal variability is to use 

acoustic features that are less sensitive to variability in the glottal-source. Weighted 

cepstral features have been successful in acoustic-to-articulatory mapping and speech 

recognition for this reason [49]. 

It is important that the codebook sufficiently cover the acoustic feature space of 

the test speaker. Figure 4.5 shows scatter plots of formant frequencies calculated for 

all of the configurations classified as vowel (Avowel = 0.2cm2) compared to formant 

frequencies measured from samples of speech for 33 adult male talkers in the famous 

experiment by Peterson and Barney [50]. While the Peterson and Barney dataset 

does not represent all acoustic possibilities, it does represent features that must be 

covered by a vowel linked-codebook. 

Figure 4.5 suggests that our current vowel codebook is not quite sufficient to 

cover the formant space. At the left edge of the F1/F2 vowel triangle, Fl does not 

get below 250 Hz, while the real data have vowels with Fl as low as 200 Hz. This 

prevents some high vowels from being produced. The upper edge of the codebook 

F1/F2 triangle does not completely cover that of real speech for large Fl values. 

Similarly, the lower edge is insufficient for Fl between 500 and 600 Hz. Except for a 

few points, the remainder of the F1/F2 vowel triangle is sufficiently covered, although 

the density of samples at the edges is quite low. Another area of concern is the upper 

edge of the F2/F3 vowel cluster. The limited range of F3 prevents the accurate 

representation of a large number of vowels.   The limited coverage of the formant 
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(b) F2/F3 Pruned LAM codebook 

Figure 4.6: Formant frequency scatter plots after pruning and reducing Avowd to 0.15 
for all entries in a vowel codebook using the LAM. 

space by the articulatory speech synthesizer is consistent with that reported in the 

literature for many articulatory models [12, 14, 45]. While the coverage is sufficient 

for the formant frequencies of prototypical vowels [51], they are not sufficient for all 

speakers and sounds. Can the codebook's vowel space be expanded and improved in 

order to be more robust in acoustic-to-articulatory mapping pursuits? 

The minimum vowel constriction area threshold, Avowel, has some effect on code- 

book coverage of the formant space. Reducing Avowei can extend the left edge of the 

vowel triangle for better coverage of high vowels. To extend the range of Fl down to 

200 Hz, we found it necessary to reduce Avowel to 0.05. Unfortunately, a value this 

small will cause audible frication to be produced for many high vowels. For practical 

purposes, a compromise of Avowel = 0.15 was chosen. As can be seen in Figure 4.6, 

this choice improves coverage of the high vowels by about 25 Hz without grossly vi- 

olating the assumptions of our fricative production model. If it becomes necessary, 
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Ayowei can be reduced further and the fricative production model can be adjusted to 

compensate for vowels with smaller constrictions. 

A likely explanation for the discrepancy in the coverage of the formant space be- 

tween the synthesizer and the Peterson and Barney dataset is the variability between 

speakers in the length and scale of the vocal-tract. Speakers with shorter vocal-tracts, 

produce vowels with consistently higher formant frequencies. This was confirmed by 

including female speakers from the Peterson and Barney dataset into the scatter plots. 

The vowel triangle expanded significantly, notably to increase the range of F2 and F3. 

Therefore, with our current articulatory model, there may be certain speakers whose 

vowels are not adequately covered. The "voice" that is the LAM cannot reproduce 

the speech of these speakers. 

In addition to a restricted coverage of the formant space, preliminary experiments 

on vowel inversion found that for many speakers, the average spacing between their 

first four formants is significantly different than the spacing for the synthesizer. This 

too may be explained by variability between speakers in the length and scale of the 

vocal-tract. Consider a uniform tube of length /, closed at one end. The resonant 

wavelengths, A = (4/, |/, |Z,...), are proportional to /. Therefore, the resonant fre- 

quencies are inversely proportional to I. Longer vocal-tracts have a smaller average 

spacing between formants than shorter vocal-tracts. 

Although automatically adapting the articulatory model to individual speaker's 

vocal-tracts is beyond the scope of this work, some speaker normalization techniques 

were nonetheless required to get reasonable performance in acoustic-to-articulatory 

mapping experiments. A suboptimal and somewhat inelegant procedure used to get 

greater coverage of the vowel feature space and better match to real vowel spectra is 
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Figure 4.7: Formant frequency scatter plots after scaling vocal-tract lengths by 0.85 
for all entries in pruned vowel codebook using the LAM. 

to assume a shorter vocal-tract length in the LAM. This is accomplished by uniformly 

scaling the length of each section of the area-function by a value slightly less than one. 

Such an approach is often necessary for any successful inversion to occur; solutions 

must exist if they are to be found! A more realistic adaptation would include a non- 

uniform scaling with greater length reduction in the pharynx than in the mouth for 

female vocal-tracts. 

Figure 4.7 shows the vowel triangle after scaling by 0.85. The upper edge of the 

F1/F2 vowel triangle is extended almost 400 Hz and the right corner is 100 Hz farther 

to the right. We lose about 50 Hz of coverage on the lower edge of the triangle for 

small Fl. About 25 Hz of coverage is lost on the left edge of the triangle, canceling the 

gains produced by reducing Avowd. The upper edge of the F2/F3 triangle is extended 

by almost 500 Hz, with only slight losses on the lower portion of the triangle. This 
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slight length adjustment to the area-function is sufficient to increase the coverage of 

the vowel codebook to all of the adult male speakers in the dataset. To cover female 

speakers adequately, a slightly smaller scale factor is necessary. Some problems may 

still exist for high vowels with Fl less than 250 Hz. 

Our experience suggests that articulatory models with shorter vocal-tract lengths 

appear to represent the first three formants of long vocal-tracts better than articu- 

latory models with longer vocal-tract lengths represent the formant space of short 

vocal-tracts. But the average spacing between formants can be too large if the artic- 

ulatory model's vocal-tract length is too small. Therefore, the best choice of scaling 

factor appears to be that which produces the longest vocal-tract length that still cov- 

ers the formant space of the speaker. Selection of a scale factor has been performed 

by hand when necessary but could be automated. 

Not all forms of mismatch between the speaker and the synthesizer can be com- 

pensated. Figure 4.8 shows the results of static acoustic-to-articulatory mapping of 

the onset of /w/ in the word "away" for a male speaker. Of interest in this token 

is the reduced amplitude of the third formant compared to the second and fourth 

formants. Our acoustic-to-articulatory mapping procedures are able to match the 

formant frequencies easily, but are unable to match the formant amplitudes. Further 

optimization specifically designed to reduce the difference between formant ampli- 

tudes, while keeping formant frequencies within 5% of their correct values, was unable 

to change the formant amplitudes significantly. 

Under the right conditions, acoustic-to-articulatory mapping can be achieved in 

a straightforward manner. The major obstacle and focus of current research is in 

dealing with undesirable conditions of model mismatch. For voiced sounds, speaker 
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Figure 4.8: Actual and best synthetic fit to LP spectrum of the onset of /w/ in the 
word "away" for a male speaker. While formant frequencies can be easily matched, the 
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adaptation in vocal-tract length and spectral tilt as well as the use of acoustic features 

resistant to glottal-source variations help reduce the model mismatch problem. For 

fricatives, the same issues must be addressed, and will have a greater influence on 

the success of acoustic-to-articulatory mapping due to the greater uncertainty in the 

fricative production model 

4.4    Linked-Codebook Lookup for the Inversion of Static Frica- 
tives 

While extension of the linked-codebook procedure to fricatives may seem straight- 

forward, there are a number of issues that make the task more challenging. The selec- 

tion of effective acoustic features and efficient linked-codebook sampling and pruning 

techniques for fricatives requires knowledge about the articulation, acoustics, and 

perception of fricatives. Increased amounts of model mismatch and source-tract in- 

teraction, as well as the mixing of phonation and frication require creative solutions. 

Fricatives are distinguished by the presence or absence of voicing and their place 

of articulation. Spectrally, Strevens [52] described the spectral shape of fricatives by 

separating fricatives into three groups: front, middle, and back fricatives. Front frica- 

tives, /f,v,0,S/, have the lowest intensity and smoothest spectra. Middle fricatives, 

/s,z,J,3/, have a highest intensity and have spectra characterized by one or more 

major "humps" in the middle frequency range. Although not considered here, back 

fricatives such as /x/ and /\f have moderate intensity and spectra with a formant-like 

structure. Figures 4.9 and 4.10 illustrate the spectra of some English fricatives for a 

male and a female speaker. The spectra of voiced fricatives contain energy at low 

frequencies due to the modulation of airflow by vocal-fold vibration. At higher fre- 

quencies, above the fourth or fifth harmonic of the fundamental frequency, voiced and 
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Figure 4.9: Fricative spectra for speaker MJC. 
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Figure 4.10: Fricative spectra for speaker WLR. 
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unvoiced fricatives of the same place of articulation have quite similar spectra [51]. 

Hughes and Halle [53] found that spectral distinctions between fricatives are more 

consistent within a given talker than across talkers. Spectral variation in fricatives 

across talkers can be so great that Hughes and Halle report, "The discrepancies among 

the spectra of a given fricative as spoken by different speakers in different contexts are 

so great as to make the procedure of plotting these spectra on one set of axes a not 

very illuminating one. On the other hand, the differences among the three classes 

of fricatives (labial, dental, and palatal) are quite consistent, particularly for sounds 

spoken by a single speaker." 

Perceptual experiments have found that fricatives are not as well distinguished as 

vowels by listeners, and that listeners rely on cues in addition to the fricative spectra, 

such as relative amplitude and formant transitions into and out of the fricative to 

make their decisions [54, 55]. An experiment by Harris [55] supports this conclusion. 

Listeners were asked to classify fricative-vowel tokens in which the noise from the 

fricative portion was substituted with noise from other tokens. The results suggest 

that listeners use spectral information to distinguish the fricatives /f,s,J/, but require 

additional cues from the formant transitions to distinguish between the front fricatives 

/f/ and /ö/. Similar results were found for voiced fricatives. 

For vowels, the sole acoustic energy source is at the glottis. For voiced fricatives, 

acoustic energy from frication is mixed with glottal energy. Even unvoiced fricatives 

contain some voicing, especially intervocalic unvoiced fricatives. Transitions from 

unvoiced fricatives to vowels require a duration of mixed frication and phonation. 

Resolving this mixture is a serious challenge for the acoustic-to-articulatory mapping 

of fricatives. 
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While much about the production of vowels is known, much less is known about 

the production of fricatives. While the basic process is understood [47, 23], accurate 

models of turbulent flow and the noise generated by that flow are not available. Linear 

acoustic wave propagation, an assumption in most articulatory speech synthesizers, 

breaks down near the constriction. It is believed that the noise source spectrum may 

not be the same for all fricatives, and may vary as a function of airflow. There may 

be multiple noise sources, or distributed sources. Recent research has attempted to 

identify the spectral properties of the fricative noise source [56, 57, 58, 59, 48], but 

much work remains to be done. 

The development of a better model of frication is beyond the scope of this work. 

Except for minor adjustments, we intend to solve the inverse problem for the forward 

model as defined in Chapter 3. Some acoustic features specifically designed for frica- 

tives will be investigated. Our experiments will verify and extend the work on the 

acoustic-to-articulatory mapping of unvoiced fricatives by Sorokin [17] and Shirai [18]. 

Some of the more difficult issues of mixed modes and source-tract interaction will be 

addressed in the dynamic fricative inversion studies of Chapter 6. 

4.4.1    Fricative Linked-Codebooks 

The generation of fricative linked-codebooks follows the same procedures as for 

vowel linked-codebooks, but with sampling, pruning, classification, and feature ex- 

traction tailored to fricative production, acoustics and perception. A wealth of knowl- 

edge and experience in the processing of fricated speech does not exist like it does 

for voiced speech. Therefore, the generation of good fricative codebooks will require 

more experimentation. 
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The linear articulator model used in the vowel case, will also be used as an artic- 

ulatory representation for fricatives. One additional parameter, fricative noise source 

location, is added to give the model eight parameters in all. The fricative noise source 

location is defined relative to the constriction. This modified model is referred to as 

the fricative linear articulator model (FLAM). 

Articulatory codebooks were generated using the FLAM representation without 

any additional source parameters. While significant source-tract interaction exists for 

fricatives, we believe that linked-codebooks, designed without regard to the relation 

between constriction area and frication amplitude, will still provide good starting 

points for further optimization. Uniformly distributed random sampling was used to 

collect 20000 fricative configurations, with Afric = 0.3cm. Codebook pruning was not 

performed due to a lack of a justifiable pruning criteria. 

Effective acoustic features for fricatives have not been established since frica- 

tives are seldom analyzed individually in speech processing applications. Based on 

our knowledge of fricative acoustics and perception, a good fricative acoustic fea- 

ture should represent the overall spectral shape and distribution of energy; however, 

high resolution in frequency does not appear to be necessary. The acoustic distance 

measures used by Shirai and Masaki [18] and Sorokin [17] in their respective static 

fricative acoustic-to-articulatory mapping experiments satisfy these criteria. There- 

fore, the same types of features, described below, are used in our linked-codebooks. 

1. FWCEP: This is a version of the weighted FFT-cepstral feature of [30]. Since 

our fricatives are sampled at 16 kHz, the resampled weighting function 

w. = { (V40)04, 0<i<40 
1     \ 0.5 + 0.5COS(TT(Z-41)/40),   40 < i < 60 l     ' 
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is double the original feature length.   During linked-codebook lookup, a Eu- 

clidean distance is used with this feature. 

2. FPSD: This is a 64 point power spectral density sampled linearly over the 

0-8 kHz range, excluding the DC term. During linked-codebook lookup, nor- 

malized correlation, 

Q = JQ
3
'

2
 Sl{uj)S2{^)duj 

is maximized, where S\ is the synthetic spectrum and S2 is the actual spectrum. 

The spectra of voiced fricatives differ primarily from that of unvoiced fricatives 

by the presence of energy at low frequencies due to the modulation of airflow by 

vocal-fold vibration. At higher frequencies, above the fourth or fifth harmonic of the 

fundamental frequency, voiced and unvoiced fricatives of the same place of articulation 

have quite similar spectra [51]. In an attempt to produce acoustic features that are 

somewhat insensitive to the presence of voicing, the above two acoustic features were 

modified. The new FWCEP.V and FPSD_V features are identical to the FWCEP 

and FPSD features respectively, except that the acoustic feature is calculated only 

over the 1-7.5 kHz range. 

4.4.2    Analysis of Fricative Linked-Codebooks 

In the classical definition of acoustic-to-articulatory mapping, the distance be- 

tween the estimated and actual area-functions is minimized. Unfortunately, this 

metric is difficult to employ on natural speech, since the true area-function is un- 

available. For investigative purposes, an articulatory speech synthesizer can be used 

to provide speech with known area-functions for acoustic-to-articulatory mapping ex- 

periments. This allows for performance evaluation isolated from the negative effects 
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of model mismatch and measurement noise. Evaluation using synthetic speech can 

be interpreted as an upper bound on performance, since model mismatch and noise 

will degrade results. 

A measure of how closely an inverse mapping procedure matches the true con- 

figuration can be obtained by using a sample of synthetic speech whose generating 

configuration is known. But the conclusions we can draw from a single instance are 

few. By repeating the experiment for a large number of samples, consistent and in- 

sightful statistics can be generated. Such a technique is used to examine fricative 

linked-codebooks. 

Given an articulatory vector, p, and its acoustic feature vector consequence, the 

articulatory error, e, between an acoustic-to-articulatory mapping result, pn-, and 

the actual articulatory vector is 

e = p-Pn*- (4.7) 

Let articulatory distance, d, be defined as the Euclidean distance between the result 

and the actual articulatory vector. 

d = 
\ 

X>? (4-8) 

If we assume that the input articulatory vector is a random variable, uniformly dis- 

tributed over the range of reasonable values in the articulatory space, then articulatory 

error and articulatory distance are random variables. 

The average value of articulatory distance, davg = E{d}, as well as its one dimen- 

sional probability density function, illustrates the performance of the acoustic-to-ar- 

ticulatory mapping routine and allows comparisons among different algorithms and 
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features. The covariance of the articulatory error, 

K = E{(e-E{e})(e-E{e})T} (4.9) 

provides information about how the error is distributed, and helps to identify which 

dimensions contribute most or least to the error. 

Acoustic Feature Evaluation 

The ability of linked-codebooks to represent the acoustic-to-articulatory transfor- 

mation was evaluated for different acoustic features by examining the distribution 

of articulatory distance for a large number of samples. For each of the four linked- 

codebooks described previously, articulatory error vectors were collected from the 

linked-codebook lookup of 20000 randomly generated fricative configurations. The 

random configurations were distributed uniformly over the same range of input param- 

eters used to generate the codebooks. Additionally, articulatory error and distance 

were collected for "best" and "random" lookup. Best lookup chooses the articulatory 

configuration in the linked-codebook that is closest to the true configuration. Al- 

though not ideal performance, best lookup performance is a measure of the quantiza- 

tion noise inherent in the linked-codebook representation. Random lookup randomly 

chooses an articulatory configuration in the linked-codebook, assuming every code- 

word to be equally probable. For the calculation of articulatory error and distance, 

each articulatory parameter was normalized to the range of 0 to 255. 

The distributions of articulatory distance for all four acoustic lookups, along with 

best and random lookup, are displayed in Figure 4.11. The curves are normalized 

histograms of the data, and approximate the probability density function of the artic- 

ulatory distance for the codebook. Distributions located farther to the left indicate 
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better acoustic-to-articulatory mapping performance. All acoustic lookups outper- 

form random lookup but remain distant from best lookup. Acoustic lookups with the 

FWCEP feature appear to be better than acoustic lookups with the FPSD feature. 

This is true whether Euclidean distance or normalized correlation is used. For both 

feature classes, the loss of information from below 1 kHz in the "voiced" versions has 

little effect on the distribution of articulatory distance. 

Error in best lookup is due to quantization of the articulatory space by the linked- 

codebook. Acoustic lookup also leads to error in the articulatory domain, but this 

error comes about because of quantization of the acoustic space. The articulatory 

error for acoustic lookup will, in general, not be distributed uniformly as for best 

lookup. On average, the articulatory error for acoustic lookup will vary across di- 

mensions due to the relative sensitivity of the acoustic representation to different 

articulatory dimensions. The following section investigates this distribution of artic- 

ulatory error in acoustic lookup and identifies articulatory dimensions of fricatives to 

which the acoustic representation is most sensitive. 

Investigation of Error Variance 

The distribution of articulatory error for the four linked-codebooks was inves- 

tigated by examining the articulatory error covariance matrix in each case. The 

covariance matrices for best and random lookup resemble scaled identity matrices 

with averaged scaling factors of 387 and 10430 respectively. Since all of the articula- 

tory dimensions have been normalized to the same range, the matrices suggest that 

estimation error in the best and random cases is distributed evenly between the ar- 

ticulatory dimensions. The covariance matrices for the acoustic lookups indicate that 

the error is not distributed evenly among the articulatory dimensions. Comparing the 
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Lookup Jaw Tongue Body Tongue Lip Lip Larynx Fric. 
Type Angle Position Shape Tip Height Prot. Height Loc. 

(JAW) (TBP) (TBS) (TT) (LPH) (LPP) (LRH) (FSL) 
BEST 3.97 3.57 2.78 3.82 4.63 3.83 3.83 3.85 
FPSD 66.53 41.41 23.90 64.55 19.24 50.10 71.20 54.10 

FWCEP 56.25 24.56 12.12 54.43 9.07 45.96 68.06 35.35 
FPSD.V 65.62 39.52 22.93 63.83 17.11 50.67 74.39 54.10 

FWCEP.V 56.69 25.13 12.87 54.47 8.46 45.92 73.31 34.85 
RAND 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

Table 4.2: Error variance in FLAM dimensions for all lookups, normalized by random 
lookup variance. 

estimation error in different articulatory dimensions is difficult using the covariance 

matrices alone, since the range over which each parameter may be varied has some 

influence on the error. On the other hand, comparing the articulatory error in each 

dimension to the corresponding values for best and random lookup is a more reliable 

and fair method of comparison. 

Table 4.2 shows the variance of the articulatory error in different articulatory 

dimensions for all four acoustic lookups compared to best and random lookup. The 

variances are normalized by the variance for random lookup. Notice that the variances 

in all dimensions are smaller for the FWCEP features than the FPSD features, echoing 

our histogram observations. For all acoustic lookups, the variances of LPH, TBS, and 

TBP are small compared to the large variances of LRH, JAW, and TT. Apparently, 

the linked-codebook lookup can estimate certain dimensions more accurately than 

others. An alternate, equivalent explanation is that some articulatory dimensions 

have a greater effect on the acoustics than others. 
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Lookup 
Type 

Constriction 
Location 

Frication 
Location 

Vocal-Tract 
Length 

Vocal-Tract 
Area Above Glottis 

BEST 14.12 11.25 3.95 4.97 
FPSD 

FWCEP 
FPSD_V 

FWCEP-V 

12.99 
1.55 

13.14 
2.26 

8.21 
4.61 
9.90 
6.64 

46.28 
33.95 
47.79 
36.36 

80.48 
67.21 
81.62 
76.11 

RAND 100.0 100.0 100.0 100.0 

Table 4.3: Error variance in different articulatory dimensions for all lookups, normal- 
ized by random lookup variance. 

The disparity in estimation ability is much more obvious when measured in artic- 

ulatory dimensions significant to fricatives. Constriction and frication location, which 

define the front and back cavities for fricative configurations, are known to have a 

great influence on the fricative transfer function. As shown in Table 4.3, these di- 

mensions have, for all acoustic lookups, very low normalized variances. In fact, they 

are smaller than the variance for best lookup. This is possible because best lookup 

minimizes articulatory error across all FLAM dimensions. The codeword that mini- 

mizes the distance in one dimension will not, in general, be the same codeword that 

minimizes distance across all dimensions. 

Also shown in Table 4.3 are the normalized variances for vocal-tract length and 

vocal-tract area directly above the glottis. The variance is quite large for these cases. 

Since these dimensions only affect the back cavity, they have less influence on the 

acoustics and as a result, are less well estimated. 
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In Table 4.3, the variance for best lookup across articulatory dimensions is larger 

for constriction location and frication location (14.12 and 11.25 respectively) as com- 

pared to the values for vocal-tract length and area above the glottis (3.95 and 4.97 

respectively). As described in Section A, constraints were placed on constriction area, 

constriction location, and frication location during sampling of the articulatory space 

so that only valid fricative configurations were retained. These constraints restrict the 

range of parameter choices, without affecting the coarseness of the codebook quantiza- 

tion. Therefore, the variance for random lookup and acoustic lookup is reduced, while 

variance for best lookup is unchanged. In order to make fair comparisons between 

articulatory dimensions that may have been constrained differently, lookup variances 

have been normalized by random lookup variance. As a result, normalized variance 

for best lookup is larger for dimensions that have been constrained. 

The relative accuracy of articulatory estimates can be employed in any aspect of 

acoustic-to-articulatory mapping that considers articulatory distance. Articulatory 

distance is used as a form of regularization in static inverse mapping [24] and as 

a measure of continuity in dynamic inverse mapping [25]. The ability to weight 

distance or enforce continuity more strongly in the dimensions whose estimates have 

the greatest confidence will help to focus optimization energy and improve results. 

4.4.3    Linked-Codebook Performance on Real Fricatives 

A corpus of fricative data has been collected consisting of VFV (vowel-fricative- 

vowel) clusters and fricatives in isolation. The point vowels (/i/, /u/, /a/) were 

used for VFV clusters of large contextual contrasts. English fricatives were collected 

from four native English speakers, two male and two female. Specifically, the corpus 
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consisted of the unvoiced fricatives /s/, ///, /f/, /0/, and the voiced fricatives /z/, 

11)1' i hi' i föl ■ The utterances were recorded in a sound booth using a head mounted 

microphone. Two repetitions of each sample, in both voiced and whispered contexts, 

were taken for a total of 384 fricatives recorded. Fricatives in the corpus were sampled 

at 16 kHz and segmented into 64 ms frames with a 32 ms overlap for a total of 2217 

tokens. 

Acoustic-to-articulatory mapping using linked-codebooks is examined for unvoiced 

and voiced fricatives from this corpus. If inverse mapping is working correctly, the 

resulting articulatory configurations of a speaker should be consistent within pho- 

netic class, i.e., fricatives of the same phonetic class should be produced by similar 

articulatory configurations, while configurations for different phonetic classes should 

be significantly distinct. Since fricatives are best distinguished by their place of ar- 

ticulation, we expect the lookup results to be the most consistent in that dimension. 

Therefore, scatter plots of acoustic-to-articulatory mapping results in constriction 

location, along with frication location, will be examined. 

Unvoiced Fricatives 

Linked-codebook lookup using the four linked-codebooks was performed for all of 

the unvoiced tokens of one male speaker from our corpus. Lookup was allowed to select 

the best codebook fit over a rather wide range of constriction and frication locations. 

Figure 4.12 shows scatter plots for two of the codebooks. Note the vertical striation in 

both plots. This is a consequence of the FLAM, which has fixed length (1 cm) sections 

in the area-functions it produces. In Figure 4.12(a), we see that the FPSD lookup 

produces reasonable separation by phonetic class, but with multiple clusters for some 

classes. This is not consistent with natural fricative production. While there will be 

84 



o 1  1 £  

C4.5 - X/S/ - 

■i  4 . °/JV 
co 
c ,/f/ 00                                           ° 

■ 
8 3.5 
E 
2    3 

+ /e/ ©    0 
„ ° ° o ■ 

o    ° 
Q.2.5 
c 

xo  o* 
X 

X 
-,M   2 0 X 
CO 
ü 

~X *? 
3 1.5 X o X 
c 

■S   1 _ X 
X 

X 
CO 
Ü 4 X 

it 0.5 X 
X V 

X X   x 

o i a* >&&—  X-ffl-,   x-xi 1 ! 
2 3 4 

Constriction Location (cm from lips) 

(a) FPSD lookup 

b  1  

0 

i x— 

c4.5 o - 
X/S/ 

I    4 - %r/ - 

§3.5 
E 
S    3 

- */f/ 
+ /e/ 

0 

0 
- 

0 - 
p cp <9 
5.2.5 x      o X 

c 
■H    2 - X    x 
co 
o X1* > 
31-5 - - 
c 

1    1 
> < " 

o 
£0.5 - 

ra < i « &x*  ,  1 1 

2 3 4 
Constriction Location (cm from lips) 

(b) FWCEP.V lookup 

Figure 4.12:   Clustering in constriction and frication location of linked-codebook 
lookup results on unvoiced fricative tokens of speaker MJC. 
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some variation in articulation within a phonetic class due to coarticulation, we do not 

expect distinctly different forms of articulation. FPSD lookup also has a tendency to 

form configurations with frication locations near the lips, which is physically unlikely 

when the constriction location is large. Generally, the acoustics of the results do 

resemble the real fricatives they model, although results with large frication locations 

exhibit acoustic fits with a large dynamic range and deep troughs at low frequencies. 

FWCEP lookup did not perform well, employing only a limited number of codewords 

with frication locations less than 0.1 cm. FWCEPJV lookup performs much better and 

is shown in Figure 4.12(b). Like FPSD lookup, FWCEP_V lookup shows good class 

separation, although, again, with multiple clusters for some classes. All configurations 

for HI have frication locations at the lips, which is physically unlikely. 

For both linked-codebook lookups, the majority of dental and labio-dental frica- 

tives, /0/ and /f/, are located at the lips and have reasonable acoustic fits. While 

these fricatives are not produced precisely at the lips, this may be a good choice for 

FLAM. The constriction locations for /0/ and /f/ should be very similar and located 

forward of constrictions for /s/. The articulatory characteristic that distinguishes 

/0/ from /{/ in a one-dimensional acoustic model is tongue position, and the linked- 

codebook cannot consistently make this distinction. Perceptually, these two sounds 

are hard to distinguish, so it is no surprise that the acoustic-to-articulatory map- 

ping algorithm cannot separate them. Contextual cues may be necessary to correctly 

separate the two. 

Unvoiced Fricatives with Constraints 

The analysis of frication and constriction location shows that our scattering results 

suffer from extreme values, and do not exhibit the unimodal clustering we expect. 
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Therefore, constriction and frication location have been constrained. Constriction 

location is limited to 3.5 cm, just large enough to cover the English fricatives in our 

dataset. Frication location is limited to 1.2 cm in front of the constriction. These 

constraints reduce codebook size by about 40%. 

Figure 4.13 shows scatter plots of codebook lookup with these constraints on 

constriction location and frication location. With the additional constraints we see 

a significant improvement in the clustering results. The /s/ and /J/ clusters, along 

with the /f/-/0/ cluster at the lips, are distinguished by constriction location. There 

is some overlap between the clusters for /// and /s/ that may be due the inability of 

the FLAM to define constriction location continuously. 

Figures 4.14 and 4.15 show examples of FPSD lookup. The acoustic fitness for 

/s/, /f/, and /0/ in Figures 4.14(a), 4.15(a), and 4.15(b) is good. The synthetic frica- 

tive spectrum for /// in Figure 4.14(b) has a formant-like structure, unlike the real 

fricative spectrum. This may be due to the inability of the FLAM to produce a cavity 

under the tongue when the tongue is raised to the palato-alveolar position. Fricatives 

synthesized from these results sound reasonable, even for /J/, but sound quality is 

difficult to judge in isolation. Results using FWCEP.V lookup are comparable. 

Voiced Fricatives 

Figure 4.16 contains scatter plots of results on voiced fricatives for the same male 

speaker using FPSD and FPSD_V lookup. FPSD lookup performs worse for voiced 

fricatives than for unvoiced fricatives. Apparently, the presence of low frequency 

voicing energy in the spectrum prevents FPSD lookup from distinguishing fricatives. 

In general, fewer codewords are used for the voiced fricatives. Only 5 codewords not 

located at the lips were used for voiced alveolars. Furthermore, configurations were 
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Figure 4.13: Constrained clustering in constriction and frication location of linked- 
codebook lookup results on unvoiced fricative tokens of speaker MJC. 
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Figure 4.16: Constrained clustering in constriction and frication location of linked- 
codebook lookup results on voiced fricative tokens of speaker MJC. 
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located at the lips for 86% of the voiced alveolar fricatives. Codeword usage for the 

voiced palato-alveolars are similarly reduced, although not as many palato-alveolars 

are located at the lips. Clustering for FPSD.V lookup in Figure 4.16(b) is much 

improved, and resembles the clustering performance and acoustic fitness of FPSD 

lookup for unvoiced fricatives. By eliminating contributions from frequencies below 

1kHz, the FPSD_V feature appears to better represent voiced fricatives. Linked- 

codebook lookup results for voiced fricatives using FPSD_V lookup are comparable 

to the unvoiced examples given in Figures 4.14 and 4.15. 

4.5    Discussion 

We believe that the quality of our inverse mapping for fricatives is sufficient to be 

of value to a dynamic acoustic-to-articulatory mapping system. The ability of linked- 

codebooks to provide multiple valid solutions combined with continuity constraints 

can overcome the occasional poor choice by the linked-codebook. Chapter 5 discusses 

the application of linked-codebooks to the dynamic acoustic-to-articulatory mapping 

of voiced sounds. The dynamic acoustic-to-articulatory mapping procedures are then 

extended to include fricated speech in Chapter 6 using the features and constraints 

developed in this chapter. 
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CHAPTER 5 

AN ACOUSTIC-TO-ARTICULATORY MAPPING 
SYSTEM FOR VOICED SOUNDS 

5.1    Introduction 

In the previous chapters, we have considered only the static case of acoustic-to- 

-articulatory mapping. This chapter considers the dynamic acoustic-to-articulatory 

mapping problem for voiced utterances. As mentioned in Chapter 4, voiced speech 

refers to only vowels and glides, without liquids or any fricated, aspirated, nasalized, 

or plosive sounds. Acoustic-to-articulatory mapping for voiced sounds is a logical first 

step in the development of a complete inverse mapping system for all speech sounds. 

Dynamic inversion for voiced sounds has been attempted by a number of researchers 

with some success (see Chapter 2 for a review of past work). Many of the procedures 

described in herein are based on this previous work. 

A frame-based approach has been taken to the dynamic mapping problem. In this 

approach, the continuous articulatory trajectory, p(i), is represented with a uniformly 

sampled version, pm, such that 

Pm=p(*)|i=mT,    m = l,...,M, (5.1) 

where T is the sampling period and M is the total number of frames. Each sample 

represents a frame over which a single articulatory configuration is estimated, much 
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like in the static case. Sampling periods are generally in the range of 5 ms to 30 ms. 

Since our articulatory speech synthesizer operates in the frequency-domain and is 

frame-based, the frame-based approach is logical and straightforwardly implemented. 

As in Chapter 4, acoustic-to-articulatory mapping on each frame will be accom- 

plished using linked-codebook lookup. The linked-codebook lookup procedure can 

be used to find the N codebook configurations that most closely resemble a given 

speech segment according to some distance metric. The results of this iV-best code- 

book lookup are candidate articulatory configuration solutions and may be distributed 

across the entire articulatory space due to the one-to-many nature of the acoustic- 

to-articulatory transformation. Instead of merely selecting the best linked-codebook 

fit as in the static case, continuity constraints can be applied to select from the 

iV-best candidates in each frame the best trajectory matching the given utterance. 

Constraints on frame-to-frame transitions represent natural constraints on articula- 

tor motion due to physiological limitations and inertia and can reduce ambiguity in 

the mapping by eliminating unlikely solutions. Continuity constraints can be strictly 

defined, or loosely enforced using cost functions that penalize discontinuous trajecto- 

ries. 

The inverse problem for the frame-based case can be formulated as follows. Given a 

sequence of M acoustic feature vectors, am, m € [1, M], extracted from an utterance, 

calculate /, the sequence of indices of the linked-codebook $ that best fits the acoustic 

sequence, a, according to some cost function, Dtota[(a,I). 

As proposed by Sondhi and Schroeter [25], an appropriate cost function is one that 

minimizes the overall acoustic error and limits the possible solutions to those that vary 

smoothly. The cost function, Dtotai(a,I), is typically expressed as the combination 
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of two costs: one measuring the acoustic distance between the original utterance and 

its resynthesis and the other measuring continuity in the articulatory parameters or 

some articulatory representation. 

Dtotai(a, I) = Dacoust(a, I) + DarUc(I) (5.2) 

Generally for the frame-based case, Dacoust is merely the sum of the acoustic distances 

in each frame. 

M 

Uacoustfäi l) =   / j Qqeou5t(ami ^m) (5-3) 
m—1 

Dartic(I) is a function of the entire articulatory trajectory. Often, it is convenient to 

define Dartic as a summation of the smoothness contributions, dartiC, of each frame. 

Each frame's contribution represents smoothness in the local region. 

M 

Dartic(I) = ^2dartic(I,m) (5.4) 
m=l 

Finding the optimal trajectory according to the composite metric of Equation (5.2) 

can be achieved efficiently using a procedure called dynamic programming [60]. Dy- 

namic programming is an efficient technique for finding an the optimal path through 

a set of nodes, according to some path metric. The path metric is a combination 

of two measures: one that measures the cost of traveling between points (transition 

costs) and one that measures the cost of passing through points(node costs). In our 

problem, we seek the best articulatory path that minimizes Equation (5.2). The 

acoustic distance of each frame is the node cost, while the articulatory smoothness 

at a frame is the transition cost. 

The result of codebook-lookup followed by dynamic programming is generally not 

a sufficient final solution due to the coarseness of the codebook sampling. Therefore, 
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frame-based numerical optimization can be used on the dynamic program result to 

improve both the acoustic fit and the articulatory smoothness. 

Our inverse mapping procedures take advantage of time-frequency/source-tract 

division within the synthesizer to estimate vocal-tract shape independently of the 

state of the glottal-source. Independent estimation of glottal-source and vocal-tract 

parameters cannot properly resolve the interrelated contributions of the source and 

vocal-tract. But due to the limited accuracy of our synthesizer and articulatory mod- 

els, and the limited precision of our inverse algorithms, accurate resolution of source 

and tract contributions is not a practical goal. Therefore, independent estimation of 

source and tract parameters is used for simplicity in implementation and a reduction 

in the number of parameters to be estimated simultaneously. 

The nature of the goodness measure has a significant effect on the results of the 

dynamic programming approach. While an optimal path can always be found, this 

path may not always correspond to a physiologically plausible articulatory trajectory. 

Additionally, the resynthesis may be unintelligible. The selection of an acoustic fea- 

ture/distance measure, an articulatory distance measure, and the relative weighting 

between the two are important research topics. Appropriate solutions depend on the 

type of speech being processed, the type of mapping algorithm, and the quality of 

the forward model (synthesizer). 

5.2    Inverse Mapping Using Formant Frequencies As Acous- 
tic Features 

5.2.1    Procedure 

The procedure of linked-codebook lookup and dynamic programming is applied 

to an inverse mapping problem using the LAM as the articulatory representation and 
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the first three formant frequencies as the acoustic feature.   Both the acoustic and 

articulatory distances are Euclidean (squared) so that 

dacoust(&m, Im) = ||(am - <f>ff(Im)\\t (5.5) 

and 

dartic(I,m) = \  „'   ,r x     a- (T     sl|2    m~] (5-6) 

The test utterance is the question "Why were you away a year Roy?" spoken by a 

male talker in a quiet room with an inexpensive microphone. The first three formant 

frequencies, FO, and rms power were extracted for 15 ms frames using the ESPS 

formant routine. Some hand tuning of the resulting formant trajectories was required. 

Linked-codebook lookup on a 40000 entry codebook is used to select the iV = 128 

codebook configurations for each frame that minimize the Euclidean distance between 

the first three formant frequencies of the speech segment and the synthetic transfer 

function. Dynamic programming uses the same acoustic distance (node cost) along 

with an articulatory distance (transition cost) defined as Euclidean distance between 

LAM parameters of adjacent frames. Weighting between the total acoustic distance, 

dacoust, and the total articulatory distance, dartic, is included in the overall distance 

measure, Dtotai, by defining a weighting factor, 7 0 < 7 < 1, so that 

y j. —    1 

Dtotai — "^ dacoust + ~p) -^artio (5-7) 
Uacoust J-/nrtir 

where Dacoust and Dartic are normalizing factors depending on the acoustic and articu- 

latory feature/distance measures respectively. As 7 is increased, the relative weighting 

of acoustic distance increases over that of articulatory distance. Without normaliza- 

tion by the average distances, Dacoust and Dartic, a 7 of 0.5 would not result in equal 
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contributions of articulatory and acoustic distances in most cases, since Dacoust and 

Dartic can differ by orders of magnitude. Since we will be experimenting with a vari- 

ety of acoustic and articulatory features, it will be useful to have a weighting factor 

within dynamic programming that is normalized. Average acoustic distance, Dacoust, 

can be estimated as the average of the acoustic distances of the N-best candidates for 

all frames of a test utterance. A crude estimate of the average articulatory distance, 

Dartic, can be calculated by averaging the articulatory distance between the best 

5-10 codewords between adjacent frames for all frame boundaries. More complex, 

time-varying weightings have been reported [4] and may be necessary for utterances 

containing more than just voiced sounds. 

Iterative numerical optimization can improve upon the results of codebook-lookup 

and dynamic programming by reducing the acoustic distance for each frame and/or 

reducing the transition costs between frames. Our optimization strategy is as follows. 

1. Reduce the maximum formant frequency deviation (of the first three formants) 

to less than 3% for all frames. 

2. For each frame, minimize the total transition cost between the preceding and 

following frames, constrained to keeping the maximum formant frequency devi- 

ation to less than 3%. 

3. Repeat 2 as necessary to increase smoothness. 

5.2.2    Results 

Figure 5.1 shows the spectrogram of the original utterance and the resynthesized 

version after codebook-lookup, dynamic programming, and iterative optimization. 

Formant tracks match closely and there is no observable transient energy due to poor 
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Figure 5.1: Spectrograms of the original and resynthesized versions of the utterance 
"Why were you away a year Roy?". 
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Fl F2 F3 
MAX (Hz) 17 53 79 
AVG (Hz) 9 25 33 

Table 5.1: Maximum and average error in formant frequency estimates for the first 
three formants. 

frame transitions. The desired and estimated formant trajectories are very close with 

average and maximum frequency deviations as shown in Table 5.1. The close match 

in formant trajectories makes the resynthesis quite intelligible, but unfortunately, the 

resynthesis is not completely natural. More effort needs to be spent on the source 

model and parameters to improve naturalness. Figure 5.2 shows LAM cross-sections 

at different points along the utterance. Most of the configurations are reasonable, 

although the LAM has a tendency to form unnatural constrictions in the pharyngeal 

region. This tendency has also been observed by Boe et al. [39] who suggest that it 

may be avoided with appropriate codebook pruning. The estimated configurations for 

[r] in "were" and "year Roy" were bunched rather than retroflex, which is consistent 

with most speakers of American English. 

Instead of merely selecting the best acoustic match from the linked-codebook 

for each frame, dynamic programming selects a smooth articulatory trajectory out 

of the top N acoustic matches for each frame. This improvement in articulatory 

trajectory is obtained at the expense of an increased overall acoustic distance as 

shown in Figure 5.3. The tradeoff within dynamic programming between acoustic 

fitness and articulatory smoothness is controlled by the weighting factor, 7, and 

has a significant effect on the resulting trajectory. With formant frequencies as our 
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(a) Frame 26, [w] of (b) Frame 36, [j] of (c) Frame 64, [ei] of 
"you" "away" 

(d) Frame 88, [a-] of 
"year" 

(e) Frame 107, [oi] of 
"Roy" (onset) 

(f) Frame 115, [oi] of 
"Roy" (offset) 

Figure 5.2: Selected LAM configurations from the acoustic-to-articulatory mapping 
of the utterance "Why were you away a year Roy?". 
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acoustic feature, most of the top N codewords are reasonable fits so acoustic distance 

is weighted lightly. We found that 0.1 was a reasonable choice for 7 in this case. 

The effects of the two stages of optimization are shown in Figure 5.4. The first 

optimization improves the acoustic fit of each frame, without regard to trajectory 

smoothness. Its main purpose is to correct poor acoustic fits due to gaps in the 

codebook. The biggest improvements occur in three or four regions, typically [r] 

and [w] sounds, where the codebook could not find good matches. The second, 

smoothing optimization modifies the trajectory without significantly affecting the 

acoustic fit. The acoustic distance does increase after the second optimization, but is 

maintained within the 3% constraints. The smoothing optimization improves average 

frame transition cost by 35%. While this is a significant improvement, the actual 

configurations are not drastically altered. Figure 5.5 shows the vocal-tract cross- 

section corresponding to one of the largest changes in the smoothing optimization. 

The change is not profound; however, there are a few sharp transitions, such as those 

at frames 32 and 7, that may not reflect natural movement of the articulators. Further 

smoothing optimization would continue to improve trajectory smoothness, but with 

a limiting effect. As we see in Figure 5.5, the overall change in the trajectory will be 

small. 

5.2.3    Discussion 

While the above technique may not be the perfect solution, it is a working solution 

that acts as a starting point upon which to improve. We have intelligible resynthesis, 

acoustic-to-articulatory mapping results with reasonable articulatory configurations 

and, in most cases, smooth frame transitions. Work on the glottal-source is necessary 
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(a) Acoustic distance 

120 

(b) Articulatory transition distance 

Figure 5.4: Per frame acoustic and articulatory transition costs for three stages 
of acoustic-to-articulatory mapping of the utterance "Why were you away a year 
Roy?": after dynamic programming(dash-dotted), after first optimization (dashed), 
after smoothing optimization(solid). Note that articulatory transitions after dynamic 
programming and after the first optimization are nearly identical. 
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Figure 5.5: Articulatory configurations for frame 124, in which one of the larger 
articulatory changes was made during the two optimization stages. The dashed line 
corresponds with the optimized trajectory; the dash-dotted line corresponds to the 
configuration before optimization. 
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to improve naturalness, but that is somewhat independent of the vocal-tract estima- 

tion. Some comments and observations can be made on the algorithm in general and 

the use of formants as an acoustic feature. 

It does not appear to be difficult to find articulatory trajectories such that the 

first three formant frequencies are within 3% of their desired value. The more difficult 

problem is selecting a trajectory that is reasonable, in terms of smoothness and pro- 

duction plausibility. The approach of linked-codebook lookup and dynamic program- 

ming quickly provides us with a reasonable "global" solution that can be fine-tuned 

using iterative optimization. It is important to note that iterative optimization does 

not drastically alter the overall articulatory trajectory. Dynamic programming solves 

the majority of the inverse transformation, with iterative optimization merely ensur- 

ing an acceptable resynthesis. Therefore, if the dynamic programming result includes 

an unnatural transition, possibly due to the coarseness of the linked-codebook, frame- 

based iterative optimization cannot detect or correct the problem. This suggests an 

alternative approach to the inverse mapping problem that places more responsibility 

on iterative optimization. By starting iterative optimization from an adjacent frame 

configuration, proximity in articulatory and acoustic domains can be exploited to find 

solutions that produce good acoustic matches and provide very good frame-to-frame 

transitions. This approach has been used in a number of acoustic-to-articulatory 

mapping algorithms [3, 61, 62]. This approach does not offer the same "global" op- 

timization perspective that dynamic programming does, but offers smoother "local" 

trajectories. The comparison and, perhaps, combination of these two approaches is a 

fertile area for future investigation. 
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Are formants good features for acoustic-to-articulatory mapping of voiced sounds? 

Formant frequencies, or their logarithms, have been used in many acoustic-to-articula- 

tory mapping studies [24, 12, 63, 16, 20, 9]. Our positive results suggest that formant 

frequencies are strong features, but it is likely their performance can be improved. 

Formants are a perceptually salient feature of voiced sounds. Their use as an acoustic 

feature ensures intelligible resynthesis, which is a necessary condition of our result. 

For better or worse, a seven dimensional articulatory representation is estimated on 

each frame from a single three dimensional acoustic feature. The four unconstrained 

dimensions provide the freedom to match formant frequencies and make adjustments 

for smoothness. Whether this permits or prevents accurate acoustic-to-articulatory 

mapping results is not clear, but since formants are such strong features for voiced 

sounds, we might be "getting away" with this underdetermined situation. Since for- 

mant frequencies are just a partial description of entire spectrum, we are not, directly 

or indirectly, matching formant bandwidths, formant amplitudes, spectral tilt, etc. 

Clearly, there is much more information in speech signal that is not being used. More 

acoustic dimensions can eliminate the underdetermined situation and should add in- 

formation to help improve acoustic-to-articulatory mapping results. But if significant 

model mismatch exists between actual speech production and our articulatory speech 

synthesizer due to the assumptions, simplifications, and constraints of our forward 

model, the extra information might obscure a reasonable solution with acoustic fea- 

tures of secondary importance. For example, Sorokin [24] performed static inversion 

using log formant frequencies and compared results to X-ray microbeam data. He 

found that results can worsen when four formants are used over three and observed, 

"the same situation emerges when amplitudes of formants are included in the acoustic 
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constraints - in many cases, formant and tongue shape matching get worse instead 

of better." The best compromise between underdetermined and over-constrained 

features is likely to depend on the forward model, the inversion technique, and the 

ultimate goal of the acoustic-to-articulatory routine. 

While formant frequencies have provided us with a working solution, there are a 

number of reasons why formant frequencies are not good for our applications. First, 

the acoustic-to-articulatory mapping routine is very sensitive to incorrect formant fre- 

quencies, therefore hand inspection and tuning of the automated formant extraction 

results is required. Second, formant frequencies are not good features for non-voiced 

sounds such as fricatives. While we may use different features for voiced and fricated 

sounds, it may be desirable to use the same, or similar acoustic features for both 

fricated and non-fricated portions. Therefore, we need to investigate using acous- 

tic features other than formant frequencies for our acoustic-to-articulatory mapping 

algorithm. 

5.3    Inverse Mapping Using Alternative Acoustic Features 

There is a large variety of speech features which could be applied to the acoustic-to- 

articulatory mapping problem. Most features in the literature are either PSD-based, 

LPC-based, or FFT cepstrum-based. Perceptual weighting or frequency scaling can 

be applied to any of the features as well. We have chosen to investigate cepstral-based 

features due to their potential as features for fricatives as well as their demonstrated 

utility for voiced sounds [64, 30, 61]. Another strong impetus for their use is that 

cepstral features, with appropriate weighting, have been shown to offer reduced sen- 

sitivity to variations in the glottal-source. Weighted FFT cepstral coefficients with 
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weighting as defined by Meyer, Schroeter and Sondhi [30] was used as an alternative 

feature in our acoustic-to-articulatory mapping algorithm. This weighting is designed 

specifically to reduce source influence in a acoustic-to-articulatory mapping routine. 

W9fW = {o25 + 0.5cos^,   l = 2i'.'..30 <"> 

5.3.1    Results and Discussion 

Linked-codebook lookup, dynamic programming, and iterative optimization, was 

applied to the utterance "Why were you away a year Roy" using the cepstral feature. 

It did not produce produce acceptable results. Figure 5.6 shows formant trajectories 

after dynamic programming with 7 = 0.7 for a typical case using weighted FFT 

cepstral coefficients. Dynamic programming is unable to disambiguate close formants, 

resulting in discontinuous formant trajectories due to skipped formants. Adjusting the 

weighting between acoustic and articulatory costs within the dynamic programming 

cannot overcome the problem. Errors occur in the same place for both cepstral 

features: at the [w] of "why" and the [r] of "year Roy". The location of these errors 

do not appear related to signal power, except, perhaps, at the start of the utterance 

where signal power was low. It is interesting to note that some of those frames in 

which dynamic programming made incorrect decisions are also frames in which the 

ESPS formant routine made errors and had to be hand corrected. 

Frame-based iterative optimization is unable to overcome the incorrect choices of 

dynamic programming. While transition costs are a part of the optimization criterion, 

frame-based operations cannot drastically change the overall trajectory. Frame-based 

optimization easily falls into a local minima and must start close to a good solution 
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Figure 5.6: Desired (solid) and estimated (dashed) formants trajectories for the utter- 
ance "Why were you away a year Roy?" after linked-codebook lookup and dynamic 
programming. The cost function minimized was a combination of a weighted FFT 
cepstral acoustic distance and a LAM articulatory distance. Note that further frame- 
based iterative optimization could not recover from the incorrect formant estimates. 
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120 

Figure 5.7: The number of codewords in each frame after 256-best linked-codebook 
lookup whose formant frequencies are within 400 Hz of the true formant frequencies. 
Linked-codebook lookup used Euclidean distance between weighted FFT cepstral 
coefficients (solid) and formant frequencies (dashed). 

to perform well. Therefore, dynamic programming remains the key for obtaining an 

acceptable trajectory. 

Why can dynamic programming not prune out such poor decisions such as mistak- 

ing two close formants as one or skipping over a formant? A close examination of the 

configurations provided by linked-codebook lookup reveals part of the answer. Fig- 

ure 5.7 shows a measure of the number of "good" configurations that linked-codebook 

lookup is producing in each frame. A "good" configuration is one that has formant 

frequencies near their true values. More "good" configurations gives dynamic pro- 

gramming more choices to work with and reduces the chance that a poor trajectory 

will be chosen. In a majority of the frames, most of the codewords are good con- 

figurations, but clearly there are frames for which linked-codebook lookup produces 

very few good configurations. Figures 5.6 and 5.7 suggest that the number of good 
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linked-codebook lookup configurations are small for any frame in which two formants 

are close together. Therefore, it is no surprise that poor results in dynamic pro- 

gramming occur at or near these frames. This is a very consistent trend that could 

be attributed to sampling problems/synthesizer characteristics or weaknesses in the 

acoustic feature/distance metric. Figure 5.7 also shows the number of good config- 

uration available when a formant codebook is used. Except for one location near 

frame 95 , the [r] of "Roy", there is plenty of good configurations. It is interesting to 

note that in Figure 5.3(a), which shows the acoustic fitness of acoustic-to-articulatory 

mapping using formant frequencies, there are a few segments in which the acoustic 

fitness is much worse than for other frames. In most cases, these segments coincide 

with the underrepresented segments in Figure 5.7. 

5.3.2    Continuity in Resonance 

Over certain segments, dynamic programming with cepstral features is unable to 

disambiguate close formants. Ideally, the continuity component of the cost function 

should penalize the bad breaks that accompany two formant tracks becoming one, and 

one becoming two. In practice, dynamic programming is falling into bad local minima 

due to the paucity of candidates with a correct formant structure. Our experience 

suggests that frame-based iterative optimization does not drastically alter the overall 

articulatory trajectory except to smooth it and improve the acoustic fit. Therefore, it 

is essential that the results of dynamic programming have continuous formant traces. 

One way to encourage this is to incorporate a formant continuity measure, dreson, into 

the transition costs within dynamic programming. 

dreson(i,m) = |   ^^ _ Q^^g     ™ > j (5-9) 
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The articulatory distance, dartic, is redefined to be the weighted sum of the original 

articulatory distance, d°^tic, and the formant transition measure, dreson. 

dartic = ßdtrtic + (1 " ß)dreson (5.10) 

The weighting term, ß, must be tuned appropriately and can be normalized much 

like the 7 term in Equation (5.7). Unlike formant frequency estimation from real 

speech, formant frequencies in synthetic spectra are easy to estimate. Resonances are 

clearly defined in the synthetic transfer function, and are not obscured by glottal- 

source effects and noise. Finally, to increase the number of candidate configurations 

with a desirable formant structure, the number of candidate configurations produced 

by linked-codebook lookup was increased from 128 to 1024. 

Figure 5.8 shows the formant trajectories estimated with dynamic programming 

using formant continuity in the cost function. Weighting factors, 7 and ß, were 0.85 

and 0.0 respectively. Formant continuity corrects many of the errors experienced in 

Figure 5.6. 

Further iterative optimization of the dynamic programming result, including for- 

mant continuity in the cost function, produces reasonable resynthesis and articulatory 

trajectories with quality approaching that of the results using formants as features 

(See Figure 5.9. The only area of difficulty is the [r] of "year Roy" where dynamic pro- 

gramming provided a poor starting point. Resonance continuity significantly improves 

the quality of the resynthesis, purely because it enforces smooth formant trajectories. 

A big issue in the iterative optimization phase is the appropriate weighting of acoustic 

verses articulatory distances, and the weighting of articulatory model constraints and 

formant smoothing constraints. Correct values for these parameters is not as clear as 

in the dynamic programming case. 
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Figure 5.8: Desired (solid) and estimated (dashed) formant trajectories for the utter- 
ance "Why were you away a year Roy?" after linked-codebook lookup and dynamic 
programming. The cost function minimized was a combination of a weighted FFT 
cepstral acoustic distance and formant smoothing. This is a significant improvement 
over Figure 5.6. 
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Figure 5.9: Spectrograms of the resynthesized versions of the utterance "Why were 
you away a year Roy?" after dynamic programming and iterative optimization using 
weighted FFT cepstral coefficients as the acoustic feature, and resonance continuity 
in the articulatory distance. 
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CHAPTER 6 

INTEGRATION OF VOICED AND FRICATED SPEECH 
IN AN INVERSE MAPPING SCHEME 

6.1    Introduction 

In Chapter 4, fricative linked-codebooks were generated and used to identify effec- 

tive acoustic features for fricative acoustic-to-articulatory mapping. Ways in which 

fricative linked-codebook lookup must be constrained to produce reasonable inverse 

mapping results were identified. These results are used in this chapter to integrate 

fricatives into the linked-codebook/dynamic programming algorithm of Chapter 5. 

The differences between fricatives and vowels have a significant effect on the way 

acoustic-to-articulatory mapping is performed for each. The same acoustic feature 

and acoustic distance metric cannot be used for all sounds, since the perceptually 

significant differences between phones of one class may be different than those for 

another phonetic class. For example, in Chapter 4, fricative features were designed to 

be insensitive to the presence of voicing and represent frequencies up to 8 kHz, while 

the vowel features were chosen for their insensitivity to glottal-source variation and 

represent frequencies only up to 4 kHz. Similarly, good articulatory distance measures 

for one class of sounds may not be effective for another class of sounds. Fortunately, 

our fricative articulatory model is identical to the vowel articulatory model, except 
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for the addition of an extra parameter specifying frication source location. Therefore, 

differences in articulatory model-based distance measures may be less pronounced. 

Changes in phonetic class during acoustic-to-articulatory mapping requires the ef- 

fective transition between different acoustic and articulatory distance measures. For 

example, the use of a weighted articulatory distancep-based on the relative "signifi- 

cance" of articulatory dimensions as suggested in Chapter 4 imposes an articulatory 

distance that is dependent on phonetic class. 

In addition to the above articulatory and acoustic differences, there are differences 

between the acoustic-to-articulatory mapping of fricated and voiced speech that are 

especially important in the dynamic case. Significant source-tract interaction exists 

in fricative production. The presence and amplitude of frication is strongly dependent 

on the area of the constriction. At the same time, since constriction area is small, 

transfer functions are also quite sensitive to constriction area. The non-linear relation 

between constriction area and the glottal-source source settings determines frication 

amplitude as well as the presence and magnitude of voicing. In voiced fricatives, 

energy is present from two sources: the frication noise pressure source, and the glottal- 

source. The contribution of each to the speech waveform must be separated in some 

way in order to estimate vocal-tract shape and balance the relative contribution of 

each source. The presence of such mixing suggests the need to simultaneously estimate 

two acoustic transfer functions. 

In order to lead up to an acoustic-to-articulatory mapping algorithm for voiced 

and fricated speech, we present techniques for using contextual information to im- 

prove inverse mapping estimates for both vowels and fricatives.   These results are 
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then combined with the results of Chapters 3 through 5 to produce an acoustic-to- 

-articulatory mapping algorithm for voiced speech containing intervocalic fricatives. 

We discuss source-tract interaction in fricatives and present a heuristic to decouple 

the estimation of source and vocal-tract parameters. Operation of the algorithm is 

demonstrated for a variety of vowel-fricative-vowel tokens. 

6.2    Contextual Information for Voiced and Fricated Speech 

In the frame-based formulation of the acoustic-to-articulatory mapping problem, 

an articulatory configuration is estimated from a single frame of speech. This esti- 

mate can be improved with the use of contextual information, in the form of acoustics 

and articulatory estimates from adjacent frames. This improvement from contextual 

information is achieved in the voiced algorithm of Chapter 5 by using dynamic pro- 

gramming to enforce continuity constraints across frames. The additional information 

helps to alleviate the effect of the many-to-one mapping problem by offering addi- 

tional information with which to select from possible solutions. Acoustic-to-articula- 

tory mapping of fricated speech should similarly benefit from contextual information, 

perhaps even to a greater degree, since there appears to be a greater amount of 

uncertainty in static fricative estimates. 

Formant transitions into and out of fricatives often show rapid changes. These 

dynamics are cues for fricative perception and may be used to indicate the direction 

in which the articulators are moving. In many cases, these formants are visible well 

after the start of frication so a voiced acoustic-to-articulatory mapping should be able 

to extract some information from this segment. For example, Figures 6.1 through 6.4 

show the results of directly applying the voiced, dynamic acoustic-to-articulatory 
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(a) Spectrogram and estimated formants. 

initial V final V 

(b) Central articulatory configuration of each segment. 

Figure 6.1:   Results of applying voiced, dynamic acoustic-to-articulatory mapping 
algorithm to /izi/. 
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(a) Spectrogram and estimated formants. 
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(b) Central articulatory configuration of each segment. 

Figure 6.2:   Results of applying voiced, dynamic acoustic-to-articulatory mapping 
algorithm to /aza/. 
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(a) Spectrogram and estimated formants. 

initial V final V 

(b) Central articulatory configuration of each segment. 

Figure 6.3:   Results of applying voiced, dynamic acoustic-to-articulatory mapping 
algorithm to /a0a/. 
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(a) Spectrogram and estimated formants. 

initial V final V 

(b) Central articulatory configuration of each segment. 

Figure 6.4:   Results of applying voiced, dynamic acoustic-to-articulatory mapping 
algorithm to /afa/. 
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mapping routine to speech containing intervocalic fricatives. In the fricative segments, 

the acoustic-to-articulatory mapping results do not merely hold the same configura- 

tion in the absence of a visible formant structure in the spectrogram. Often, the 

formant trajectories are continued after the formant structure disappears as can be 

seen for the voiced fricatives in Figures 6.1 and 6.2. This suggests that the algorithm 

may be tracking some lower amplitude formant energies at the fricative boundaries 

resulting from some limited vibrations that still remain in the glottis. For the un- 

voiced fricatives in Figures 6.3 and 6.4, some change in the articulatory estimates can 

be observed during the fricative segments, but it seems that the algorithm may be 

tracking frication energy. This is quite apparent for palato-alveolar fricatives, which 

have high amplitude frication as low as 2.5 kHz which overpower any low level for- 

mant energy. One way in which the tracking of fricative energy may be reduced is 

by performing acoustic-to-articulatory mapping that ends part way into the fricative 

and starts back up again near the end of the fricative. This approach is suggested 

in [4] to deal with the acoustic-to-articulatory mapping of silences gaps in stops. How 

this would improve results remains to be investigated. 

In most cases, the acoustic-to-articulatory mapping produces vowels with reason- 

able configurations and good formant locations. The presence of the central fricative 

does not appear to adversely effect the vowel inverse mapping. Of the 48 VFV to- 

kens spoken by speaker MJC, only those for /u/ with palato-alveolar fricatives made 

incorrect choices for Fl and F2. Apparently, the LAM has difficulty producing this 

vowel consistently. 
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6.2.1    Experiment 

Since the voiced acoustic-to-articulatory mapping algorithm may be tracking some 

low-level formant energy during portions of the fricative segment, we would like to 

see if that information can be used to improve our fricative estimates. 

Voiced dynamic acoustic-to-articulatory mapping was performed on VFV tokens 

to generate contextual information in the form of an estimated articulatory feature, p, 

for the central fricative frame. The articulatory feature is considered contextual due 

to the dynamic programming enforcement of continuity in both the vowel and frica- 

tive segments. For static fricative acoustic-to-articulatory mapping this contextual 

information can be incorporated into the lookup by adding to the acoustic distance 

measure, dacoust, a measure of articulatory distance, dgeo, from the contextual feature, 

P 

dtotal = dacoust + 5 dgeo (6-1) 

The contribution of the articulatory distance is weighted by 5 so that as 6 is increased 

from zero, the contribution of contextual information increases. 

Since the true fricative articulatory shape is not known for the VFV tokens, it is 

difficult to find an objective measure of the effect of contextual information on fricative 

inverse mapping. From the results of Chapter 4, we know that constrictions of non- 

sibilant fricatives (/f/, /v/, /0/, /9/) are best located at the lips while constrictions 

for sibilant fricatives (/s/, /z/, ///, /$/) are best located posterior to the lips. We 

can use the placement of the constriction location after static fricative acoustic-to- 

-articulatory mapping to classify the VFV tokens as sibilant or non-sibilant. The 

classification accuracy is an objective measure of performance. 
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5 = 0.0 6 = 0.001 5 = 0.01 
Overall 85.42 93.75 68.75 
Sibilant 95.83 91.67 37.50 

Non-sibilant 75.00 95.83 100.00 
Unvoiced 83.33 91.67 79.17 

Voiced 87.50 95.83 58.33 

N 93.75 100.00 68.75 
N 87.50 93.75 75.00 
N 75.00 87.50 62.50 

Table 6.1: Sibilant/non-sibilant classification accuracy (%) for static acoustic-to- 
articulatory mapping using distance measures incorporating articulatory distances 
weighted by 6. 

Table 6.1 shows the results of static acoustic-to-articulatory mapping with contex- 

tual information for 48 VFV tokens of speaker MJC. Normalized FPSD2 correlation 

was used as an acoustic distance and LAM Euclidean distance, weighted by S, was 

used as an articulatory distance. Without any contextual information, static lookup 

correctly locates the constriction 85% of the time. The majority of errors occur in 

mistaking non-sibilants for sibilants. The addition of an appropriately weighted ar- 

ticulatory distance, 0.001 in this case, static lookup performance improves to almost 

94%. If the articulatory distance weight is too large, classification performance is 

degraded. Since we only have 48 tokens, the strength of our conclusions is limited. 

Nevertheless, the results suggest that contextual information, even used in this sim- 

plistic manner, does help fricative acoustic-to-articulatory mapping. 

The next section describes a procedure for the acoustic-to-articulatory mapping 

of continuous speech containing fricatives. The procedure attempts to incorporate 

contextual information between voiced and fricated frames as demonstrated in this 

section. 
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6.3    An Algorithm for Inverse Mapping of Voiced and Fricated 
Speech 

Our procedure for acoustic-to-articulatory mapping of continuous speech contain- 

ing fricatives contains five steps that perform separate inversion of voiced and fricated 

segments, followed by re-estimation in the context of the previous estimates, followed 

by finer adjustments of constriction area and source parameters to produce good 

resynthesis. The procedure provides an initial estimate of the articulatory trajectory 

which can be used to seed further iterative optimization. The procedure is illustrated 

in Figure 6.5 and described in more detail below. 

The speech is assumed to be presegmented into voiced and fricated regions. Addi- 

tionally, for selection of source parameter trajectories and resynthesis, fricatives must 

be classified as voiced or unvoiced. Again, voiced speech and voiced acoustic-to-ar- 

ticulatory mapping refers to only vowels and glides, without liquids or any fricated, 

aspirated, nasalized, or plosive sounds. 

6.3.1    Step One: Voiced Speech Processing 

As illustrated in Section 6.2, direct application of the acoustic-to-articulatory map- 

ping algorithm for voiced, continuous speech to speech containing fricatives produces 

acceptable results in the voiced segments as well as natural looking transitions during 

portions of the fricative segments. These transitions follow the formant structure 

visible in many of the boundary regions between vowel and fricative. Therefore, 

the voiced acoustic-to-articulatory mapping routine of Chapter 5 is the first step 

in our algorithm. The algorithm uses weighted FFT cepstral acoustic features and 

an articulatory distance measure combining distance between LAM parameters and 
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Figure 6.5: Processing flow in acoustioto-articulatory mapping algorithm for contin- 
uous speech containing voiced and fricated speech. 
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distance between resonant frequencies. These features are used with the same relative 

weightings as described in Section 5.3.2. 

6.3.2 Step Two: Fricative Speech Processing 

This step estimates a single articulatory configuration for the central portion of 

the fricative segment. Fricative linked-codebook lookup is performed as described 

in Chapter 4 using the FPSD2 acoustic feature and the FLAM model. The linked- 

codebook is constrained in constriction location and frication location as suggested in 

Chapter 4. Additionally, constriction area is limited to a small range (0.1-0.15 cm2) 

for which our predefined source parameter trajectories are designed to operate. The 

distance measure used in linked-codebook lookup includes an additional articulatory 

distance that measures the distance of the test configuration from the central frica- 

tive configuration estimated in step one. In this way, contextual information in the 

surrounding voiced regions are used to improve the fricative estimate. As discussed in 

Section 6.2, this augmented distance measure, when properly weighted, significantly 

improves static fricative estimates. 

6.3.3 Step Three: Reprocessing of Voiced Speech Segments 

With an estimate of the central fricative configuration, it is desirable to have the 

voice segments smoothly transition into and out of the fricative segment. Therefore, 

the voiced segments are re-estimated by re-applying the dynamic programming pro- 

cedure with the fricative frames fixed to the result of step two. In a bootstrapping 

manner, the voiced acoustic-to-articulatory mapping has been used to aid fricative 

acoustic-to-articulatory mapping which is, in turn, used to re-estimate the voiced 

128 



Segments. As a result, both the voiced and fricated segments have an opportunity to 

influence the other. 

While only a single fricative configuration is estimated in step two, this configu- 

ration should be in force over a significant fraction of the fricative segment. Initial 

versions of the procedure fixed only the central fricative frame and allowed the voiced 

acoustic-to-articulatory mapping algorithm to determine all others. This produced 

very slow transitions into and out of the fricative which drastically altered the way 

it was perceived. We observed that that the dynamics of the rapid transition from 

vowel to fricative offer substantial cues to the identity of the fricatives. Incorrect 

dynamics can alter the perception of the fricative, even when the fricative acoustics 

have been well matched. This observation is supported by the perceptual experiments 

of Harris [55]. 

To prevent the slow transitions and unintentional perceptual effects, the estimated 

central fricative configuration is duplicated in the frames representing a centered 

fraction of the entire fricative segment. The remaining outer frames of the fricative 

segment are allowed to be selected by the voiced acoustic-to-articulatory mapping 

procedure. The fraction of the fricative segment that is fixed is set to 70% by default, 

but often needs to be hand adjusted to as large as 95% to improve synthesis. 

6.3.4    Step Four: Constriction Area Selection 

Constriction area is a feature of significance to both the vocal-tract and glottal- 

source simulations. The vocal-tract transfer function is very sensitive to the small 

constriction areas associated with fricative configurations. Similarly, frication am- 

plitude is sensitive to constriction area which affects the resistance to flow at the 
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constriction. This dual dependency on constriction area suggests the need for simul- 

taneous source and tract optimization in acoustic-to-articulatory mapping schemes. 

Source-tract interaction is a difficult issue that can complicate the formulation of 

acoustic-to-articulatory mapping schemes. To reduce complexity in acoustic-to-ar- 

ticulatory mapping, it is desirable to avoid simultaneous optimization of source and 

tract variables. In the synthesizer, the fricative source and the vocal-tract transfer 

function are both a function of constriction area. Therefore, by assuming a fixed 

value for constriction area in the central fricative frame, the source and tract can be 

decoupled. This approach allows us to focus on vocal-tract optimizations without the 

difficulties of the source simulation, at the expense of limiting somewhat the amount 

of source optimization that can be performed. 

The fixed constriction area used, 0.125 cm2, is consistent with reported measure- 

ments of constriction area in real fricatives [47, 48, 33]. The vocal-tract optimization 

is constrained in step two to estimate an articulatory trajectory that passes through 

this point by using a fricative linked-codebook constrained to have constriction area 

between 0.10 and 0.15 cm2. 

To avoid vowel configurations that produce audible frication, the configurations 

in the vowel codebook used in steps one and three are limited to cross-sectional areas 

greater than 0.3 cm2. Since the fricative codebook in step two is limited to configura- 

tions with constriction areas less than 0.15 cm2, the overall lookup procedures of steps 

one through three cannot offer alternatives with constrictions in the range of 0.15- 

0.3 cm2 for the vowel-fricative transitions. For smooth onset of frication, constriction 

area should smoothly change from greater than 0.3 cm2 in the voiced segments to less 

than 0.15 during the fricated segments. 
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To affect this smooth area transition, constriction area is defined in the transition 

region bordering vowel and fricative. As shown in Figure 6.6, sigmoidal interpolation 

functions are used to define a smooth constriction area transition into and out of 

the fricative. If Av
c
owel(t) is the constriction area trajectory estimated in steps one 

through three, and A{r%c is the constriction area of the central fricative frame, the 

desired constriction area trajectory, A™w(t), is defined as the combination of A™™e'(i) 

and Alric using sigmoid functions for interpolation as follows 

A7w(t) = (Avrd(t) - Al™)(gvf(t) + gfv(t)) + A{™ (6.2) 

where 

9vf{t) = 1 + exp*/(*--/) (6-3) 

and 

9fv{t) = i + exp-U-^r (6-4) 

The sigmoids gvf(i) and #/„(£) perform interpolation from vowel to fricative and 

fricative to vowel respectively. The location of the transition and the rate of transition 

is controlled by 77 and r terms of each sigmoid. Default values of are 77 and r based 

on the fricative voicing class and segmentation boundaries have been chosen. 

By specifying constriction area in this way, we are assuming that the majority of 

articulator motion has already occurred and that the transition to a narrow constric- 

tion for frication occurs without significant additional articulator motion. The reap- 

plication of dynamic programming in step three with the central fricative frame fixed 

should produce a trajectory with a constriction area that decreases as the fricative is 

approached, and increases as the fricative is completed. Therefore, this assumption 

is not unreasonable. 
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(a) Waveform for /ivi/ with vowel and fricative sections delineated. 
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(c) Constriction area, A^ew(t), after sigmoidal interpolation. 

Figure 6.6: Specification of constriction area transition into and out of fricative using 
sigmoidal interpolation. 
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Since constriction area is not an explicit variable in the LAM, the desired constric- 

tion area trajectory is imposed by a numerical optimization procedure that minimizes 

the distance between the actual configuration area and the desired area on each frame. 

6.3.5    Step Five: Glottal Source Parameter Selection (Resyn- 
thesis) 

The result of step four is an articulatory trajectory that represents an acoustic- 

-to-articulatory mapping solution. While not part of the actual acoustic-to-artic- 

ulatory mapping procedure, the production of synthetic speech from our estimated 

articulatory trajectory is one method for verifying the suitability of the acoustic-to-ar- 

ticulatory mapping result. Since this procedure does not optimize source parameters 

to match aspects of the original utterance such as frication amplitude or degree of 

voicing, source parameters must be generated in some other consistent manner. 

The constriction area trajectory has been determined in step four. Therefore, only 

the source parameters — glottal rest area, Ag0, glottal tension, q, and lung pressure, 

Ps — may be varied to produce voicing of the correct pitch and amplitude, natural 

sounding transitions into and out of fricative segments, and the correct perception of 

voiced or unvoiced frication. 

A simplified approach to source parameter selection is used. Given the type of 

each fricative segment, either voiced or unvoiced, settings for source parameters in 

the central fricative frame are set to predefined values. Sigmoidal interpolation is 

used to provide smooth transitions between vowel and fricative segments. This pre- 

specification of source parameters is employed to achieve acceptable synthesis quality 

with the least amount of automation complexity.   This approach avoids many of 
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the complications of source optimization such as controlling voicing and quantify- 

ing the relative contributions of voicing and frication. This approach also avoids 

known deficiencies in the source model. For example, we found it difficult to produce 

voiced fricatives with significantly reduced amplitudes relative to voiced segments as 

observed in our dataset. We suspect this might be due to limitations in the glottal- 

source model and the constriction resistance estimation. Such limitations would be 

difficult to overcome solely using optimization. 

Fundamental frequency during voicing is controlled by the glottal tension factor, 

q. Using a pitch extraction routine and one-dimensional optimization, glottal tension 

is adjusted to match the pitch of the voiced portions of the original utterance. For 

unvoiced fricatives, a default glottal tension of 1.6 is specified for the central fricative 

frame. This value is high enough to damp glottal vibration when glottal rest area 

is simultaneously increased. Transitions of q between the central unvoiced fricative 

frame and nearby voiced frames is achieved using sigmoidal interpolation, as used 

for constriction area interpolation. The gain factors on the sigmoidal interpolation is 

predefined depending on the fricative voicing classification. 

Lung pressure is optimized to best match the power in each voiced frame without 

changing too quickly. Lung pressure is assumed constant during VFV transitions and 

is not allowed to contribute to differences in amplitude between vowels and fricatives 

which change too quickly to be attributed to changes in lung pressure. 

Glottal rest area, AgQ, is the primary control of voicing during frication. During 

voiced sounds, including voiced fricatives, glottal rest area is set to 0.03 cm2. For 

unvoiced fricatives, glottal rest area in the central fricative frame is set to 0.14 cm2 
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which prevents glottal vibration when glottal tension is simultaneously increase. Tran- 

sitions of Ag0 between the central unvoiced fricative frame and nearby voiced frames 

is achieved using sigmoidal interpolation. 

6.4    Example 

To demonstrate the operation of the five step procedure, the acoustic-to-articula- 

tory mapping of /asa/ spoken by MJC will be detailed. The results of each stage will 

be illustrated and discussed. 

Figure 6.7 shows the spectrogram and waveform of /asa/. The utterance has 

been divided by hand into voiced and fricated regions, /s/ is an unvoiced fricative 

and appears to be completely devoiced in the central fricative frame. Weighted FFT 

cepstral coefficients were calculated over 32 ms frames with 16 ms overlap. A total of 

31 frames of features were generated. 

Voiced acoustic-to-articulatory mapping using weighted cepstral coefficients and 

continuity in resonance was performed on the utterance. Figure 6.8 shows the esti- 

mated resonances (formants) and the articulatory configurations in the central frame 

of each phone. The resonances appear correctly located in the voiced segments and 

move significantly in the fricative segment. The articulatory configuration for the 

central fricative frame cannot produce frication but does show movement from the 

low, back tongue position of /a/ toward the alveolar constriction of /s/. 

A FWCEP feature was calculated on a 64 ms frame located in the center of the 

fricative segment. Fricative linked-codebook lookup was performed with this feature, 

using LAM distance from the voiced estimate for contextual information. Figure 6.9 

shows the estimated articulatory configuration and acoustic fit. The estimated con- 
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Figure 6.7: Spectrogram and waveform of /asa/ spoken by MJC. 
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(a) Spectrogram and estimated resonances. 
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(b) Central articulatory configuration of each segment. 

Figure 6.8: Results of applying the voiced, dynamic acoustic-to-articulatory mapping 
algorithm to /asa/. 
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Figure 6.9:   Acoustic-to-articulatory mapping result on central fricative frame of 
/asa/. 

figuration has a correctly placed alveolar constriction and the transfer function has a 

large magnitude at high frequencies as expected for an alveolar fricative. The zero in 

the transfer function near 800 Hz is typical for configurations with the frication source 

located distant from the constriction (0.79 cm from the lips in this case). While a good 

overall solution, it is remarkable that this transfer function, with its large dynamic 

range, was found to be the best match to the real spectrum. 

Dynamic programming was re-applied to the lookup results of step one, except 

that the articulatory configuration in the central 70% of the fricative segment was 

fixed to the result of step two. Figure 6.10 shows the estimated resonances after this 

step. Four frames before the central fricative and two frames after have been changed 

from the results of step one in Figure 6.8(a). 
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4000 

Figure 6.10: Resonance trajectories after step three. 

The default central fricative frame constriction area is 0.125 cm2. The transition 

from this constriction area to the natural constriction area of the voiced segments 

is specified through sigmoidal interpolation. The rate and location are set to de- 

fault values, which were selected by hand for a similar VFV token. Optimization 

adjusts the configurations resulting from step three to have the desired constriction 

area trajectory. Figure 6.11 shows the constriction area trajectory before and after 

constriction area optimization. 

Figure 6.12 illustrates the articulatory trajectory resulting from step four. This 

is the acoustic-to-articulatory mapping result. Despite the dynamic programming 

and use of contextual information, the transitions from /a/ to /s/ and back appear 

quite abrupt. The configurations labeled one through three correspond to the last 

half of the initial vowel. The configurations labeled four through six are fricative 

formations. The last three configurations correspond the the transition from fricative 

to final vowel.  Frames of 32 ms, while adequate for vowels and glides, may not be 
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Figure 6.11: Constriction area before and after step four processing on /asa/. 

small enough to reproduce the necessary changes in transition regions between vowels 

and fricatives. Additional optimization on this dynamic programming result should 

improve the smoothness of the sequence as well. 

To generate synthetic speech and validate our solution, glottal-source parameters 

in the fricative segment and transition regions were set to predefined settings for 

an unvoiced fricative. Values of glottal tension, q, and lung pressure, Ps, during 

the voiced segments were adjusted to match fundamental frequency and amplitude 

respectively. The source parameters used are illustrated in Figure 6.13. 

Figure 6.14 illustrates the waveform and spectrogram of the resynthesized speech. 

There is a strong similarity between the spectrograms of Figure 6.14(a) and Fig- 

ure 6.7(a). The utterance is clearly perceived as /asa/. Due to the lack of fricative 

source optimization in the transition region, the fricative durations are different. The 

lack of optimization after dynamic programming is obvious in the abrupt changes in 
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Figure 6.12:   Sequence of estimated articulatory configurations from central nine 
frames of /asa/. 
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Figure 6.13:  Glottal and fricative source parameters used for resynthesis of /asa/: 
glottal tension, q, glottal rest area, Ag0, and constriction area, Ac. 
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Figure 6.14: Spectrogram and waveform of resynthesized /asa/. 
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Figure 6.15: Glottal and fricative source simulation for /asa/: glottal flow, ug, frica- 
tive output, pfric, and squared Reynolds number at the constriction, Re2. 

waveform shape near 0.13 s and 0.33 s.  Artifacts can also be seen in the transition 

regions of the spectrogram. 

In Figure 6.14(b), an interruption in frication can be observed at 0.257 s. This is 

the point where the constriction begins to open. Controlling the source simulation 

to maintain frication, yet start oscillation for the following vowel has proven to be a 

difficult task. Figure 6.15 plots the relative source simulation parameters and how 

they change during the synthesis of /asa/. Widening the constriction is necessary to 
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increase airflow and start oscillation, yet the widening drastically reduces Reynolds 

number and, in turn, frication amplitude. Better control of these source parameters 

is needed. 

6.5    Evaluation 

The previous example demonstrated the successful acoustic-to-articulatory map- 

ping and resynthesis of an utterance containing an unvoiced fricative. Figures 6.16 

and 6.17 show the original and resynthesized speech respectively for the utterance 

/aza/. The resynthesized speech is clear perceived as /aza/. The transitions re- 

gions are not as discontinuous as for the unvoiced case, but the resynthesized version 

exhibits the same abrupt waveform changes. The presence of voicing appears to im- 

prove configuration estimates in the transition regions. Frication amplitude, relative 

to vowel amplitudes, is not well controlled. 

In order to get a more quantitative assessment of how the algorithm performs, 

the five step procedure was applied to all 48 VFV tokens from speaker MJC. Of 

all tokens, only four produced fricatives with constriction locations that indicated 

incorrect sibilant classification. This mistake causes the step three processing to 

incorrectly modify the voiced frames. Since the voiced transitions contain many cues 

to the identity of the fricative, this type of error can be catastrophic. 

Of the estimated vowels, four configurations for /u/ were incorrectly formed as 

high front vowels. This occurred by mistaking F4 for F3 and F3 for F2. For the 

VFV cases, the vowel frames are short and have little movement with which to let 

continuity constraints eliminate unlikely trajectories. In longer utterances, this might 

not be such a problem. Occasionally, /a/ and /u/ sound rough due to poorly smoothed 
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Figure 6.16: Spectrogram and waveform of /aza/ spoken by MJC. 
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Figure 6.17: Spectrogram and waveform of resynthesized /aza/. 
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trajectories. This may be due to the fact that /a/ and /u/ must move more than /i/ to 

reach fricative configurations. Eleven of the 48 tokens produced unstable synthesis. 

This problem is more likely due to problems in the source simulation that errors 

in the acoustic-to-articulatory mapping result. The two-mass model is sensitive to 

parameter settings and easily goes unstable when sub-glottal pressure gets high. 

An informal listening test with two listeners resulted in 57% of the (stable) VFV 

tokens identified correctly. Of the misidentifications, 37.5% were due to confusion be- 

tween dental and labio-dental fricatives, and 37.5% were due to incorrectly classifying 

palato-alveolar sounds. Problems with the identification of palato-alveolar sounds is 

to be expected since Chapter 4 found palato-alveolar fricatives to be difficult to esti- 

mate well. The remaining 25% of classification errors were random errors in place of 

articulation. No errors were made in voicing identification. 

If linked-codebook lookup performed properly for both voiced and fricative seg- 

ments, the algorithm produces a reasonable articulatory trajectory. During resynthe- 

sis though, a new set of problems emerged. It is at this stage that slight errors in the 

articulatory result during transition frames become apparent. For many fricatives, 

especially the dental and labio-dental fricatives, errors in the transition phase caused 

the fricative to be perceived incorrectly. Often, errors caused the fricative to sound 

like an alveolar fricative — even if the fricative spectra does not look alveolar. These 

transition errors are due to errors in the source parameters as well as the articulatory 

trajectory. 

After step three and step four, further iterative optimization could significantly im- 

prove results. Optimization would improve acoustic fit slightly, but more significantly, 
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would make the articulatory transitions smoother. This will result in waveforms that 

do not abruptly change in appearance and sound more natural. 

There remain some unsolved issues regarding optimization during the transitions. 

Treating the transitions as voiced, as is done now, is not ideal since they contain con- 

tributions from both glottal and frication sources. Using shorter frames or some type 

of parametric estimation might improve current results under the voiced assumption. 

Jointly optimizing both the voiced and fricative contributions to the transition would 

be best, but effective distance measures and measures of relative contribution are 

needed. This type of joint optimization also would require simultaneous source opti- 

mization. The source-tract interaction issues and lack of effective frication measures 

make this a problem that would require a significant amount of work. 
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CHAPTER 7 

CONCLUSIONS 

Acoustic-to-articulatory mapping is a challenging problem in which a time-varying 

vocal-tract shape is estimated from only the speech waveform. Most progress in acous- 

tic-to-articulatory mapping has been achieved for voiced speech, without obstruent 

sounds such as stops and fricatives. This dissertation considers the acoustic-to-ar- 

ticulatory mapping problem with a focus on fricatives. Fricative production and 

perception offer unique challenges to acoustic-to-articulatory mapping which stretch 

many of the assumptions, measures, and heuristics of existing acoustic-to-articulatory 

mapping algorithms. This work identifies these issues in fricative acoustic-to-artic- 

ulatory mapping and extends existing techniques for voiced speech to unvoiced and 

voiced fricatives in isolation and in continuous speech. 

An articulatory speech synthesizer was constructed for analysis-by-synthesis-based 

acoustic-to-articulatory mapping. The synthesizer is based on the hybrid time-frequency 

domain articulatory speech synthesizer of [8] and uses the two-mass glottal model of 

Ishizaka and Flanagan [44] for the glottal-source simulation. Fricative production was 

modeled using a single noise pressure source that could be located anywhere forward 

of the constriction. A technique was developed for simultaneously approximating con- 

striction resistance and constriction flow in the aerodynamic simulation that enables 
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frication amplitude to be controlled in a natural way. A linear articulatory model 

(LAM) [42], with the addition of one parameter to specify frication pressure source 

location, was used as front end to the synthesizer for both voiced and fricated speech. 

Linked-codebook procedures were used to perform acoustic-to-articulatory map- 

ping experiments on vowels and fricatives in isolated and continuous speech. Linked- 

codebooks are a table-based procedure that provide a coarse representation of the 

acoustic-to-articulatory transformation and can be used to provide initial estimates 

for further optimization. They have been used herein to both study the fricative 

acoustic-to-articulatory transformation, and design acoustic-to-articulatory mapping 

algorithms for voiced and fricated speech. 

Linked-codebooks were first used to examine the acoustic-to-articulatory map- 

ping of voiced and unvoiced static fricatives. While fricative inverse mapping has 

been described in previous works, the capabilities and limitations of a fricative a- 

coustic-to-articulatory mapping algorithm have not been studied closely. Our inves- 

tigation attempted to provide insight on performance by examining the properties of 

inverse mapping over many cases. Acoustic-to-articulatory mapping performance was 

evaluated by analyzing articulatory estimation error for a large number of synthetic 

fricatives and phonetic class clustering for a collection of real fricatives. The quality 

of inverse mapping results for individual cases was measured based on acoustic fitness. 

Due to model-mismatch and non-uniqueness in the fricative acoustic-to-articula- 

tory transformation, reasonable results for static fricatives were not always achieved. 

Histograms of articulatory distance showed that the amount of articulatory error from 

linked-codebook lookup can vary widely and is dependent on the acoustic feature em- 

ployed. The presence of multiple clusters for a single phonetic class in scatter plots of 
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estimated constriction and frication source location demonstrated that acoustic-to- 

-articulatory mapping can make consistent errors. The scatter plots also illustrated 

occasional large errors that were physically implausible. With some modifications to 

the algorithm, acoustic-to-articulatory mapping results were improved to an accept- 

able level. By enforcing adequate articulatory constraints, many of the consistent 

errors demonstrated in the scatter plots were avoided. The proper choice of acoustic 

distance was found to significantly impact performance as well. Both features were 

modified by removing the contribution of energy from frequencies below 1 kHz. The 

modified features demonstrated a reduced sensitivity to the presence of voicing energy 

in real voiced fricatives, with equivalent performance for unvoiced fricatives. 

The linked-codebook procedure for static acoustic-to-articulatory mapping was 

extended to continuous, voiced speech using a dynamic programming procedure [13]. 

This procedure minimizes a cost function that combines a measure of distance be- 

tween actual and synthetic acoustic features within frames and a measure of continuity 

in articulatory features between frames. Successful acoustic-to-articulatory mapping 

was achieved using the linked-codebook/dynamic programming procedure with for- 

mant frequencies as acoustic features and LAM parameters as articulatory features. 

Since formant frequencies cannot be extracted from many non-voiced speech sounds, 

some alternative acoustic features were considered. The weighted-cepstral feature of 

Meyer et al. [30], which was specifically designed for acoustic-to-articulatory mapping, 

performed well, but with LAM parameters as articulatory features, was more likely 

to make errors in estimated formant frequencies. These types of errors are considered 

severe since they alter the intelligibility of the resynthesis. Performance was improved 

by using formant frequencies from the synthetic transfer functions as an articulatory 
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feature. These formant frequencies can be calculated for any type of speech or ar- 

ticulatory configuration and can prevent many unnatural frame transitions. The use 

of formant frequencies as articulatory features in the continuity measure appears to 

have the same effect as the processing contained in our formant extraction algorithm 

and gives performance similar to our initial algorithm using formant frequency as 

acoustic features. 

Direct application of the voiced acoustic-to-articulatory mapping algorithm to 

speech containing intervocalic fricatives cannot correctly process the entire utter- 

ance. Acoustic-to-articulatory mapping in the voiced segments was unaffected by 

the presence of fricatives in the utterance, except for a few utterance containing 

palato-alveolar fricatives. As expected, since no frication information was used in the 

inverse mapping, the configurations estimated during the fricative segments were not 

reasonable; however, the linked-codebook/dynamic programming procedure was able 

to follow formant transitions into and out of fricatives resulting in estimated trajecto- 

ries with constrictions that narrow during the fricative segments. This suggests that 

voiced acoustic-to-articulatory mapping over fricative segments may provide contex- 

tual information that can be used to aid fricative acoustic-to-articulatory mapping. 

To test whether contextual information from the voiced acoustic-to-articulatory 

mapping algorithm can improve fricative estimates, the static acoustic-to-articulatory 

mapping of VFV central fricatives was performed with and without the inclusion of an 

articulatory distance measure between the estimated fricative configurations and its 

voiced inverse mapping estimate. Performance was measured in terms of the ability of 

the static acoustic-to-articulatory mapping procedure to correctly classify the fricative 

in VFV tokens as sibilant or non-sibilant.   Without contextual information, static 
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acoustic-to-articulatory mapping correctly identified sibilance for 85% of the VFV 

token. With the addition of contextual information, correct identification rose to 

94%. 

The results of the static fricative acoustic-to-articulatory mapping experiments 

were used to extend the dynamic acoustic-to-articulatory mapping algorithm to con- 

tinuous, voiced speech containing intervocalic fricatives. The fricative acoustic fea- 

tures, constraints, and linked-codebooks developed in Chapter 4 were included in 

the new algorithm. Based on the ability of contextual information to improve inverse 

mapping results for both fricatives and vowels, a five step procedure was developed for 

the dynamic acoustic-to-articulatory mapping algorithm to continuous, voiced speech 

containing intervocalic fricatives. Multiple stages of processing are used to bootstrap 

articulatory estimates using contextual information. The results of voiced acoustic- 

-to-articulatory mapping are used to assist fricative inverse mapping. The resulting 

fricative articulatory estimates are then used to improve the acoustic-to-articulatory 

mapping in the voiced segments. The algorithm requires an utterance that has been 

segmented into fricated and voiced segments. Estimation of glottal-source parameters 

for controlling frication amplitude and state of voicing is not fully automated. Given 

the voicing status of the fricative, a constriction area trajectory is imposed on the 

result and predefined source parameters are provided. The result is fed to the synthe- 

sizer to produce speech that is correctly perceived in terms of voicing and phonetic 

class, but whose source characteristics are not matched to the original utterance. 

Development and testing of the procedure used a collection of vowel-fricative-vowel 

(VFV) tokens from a single male talker. In most cases, the estimated articulatory tra- 

jectories appeared quite natural and produced the correctly located constriction for 
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fricatives. Occasional errors occurred due to vowel or fricative misidentification early 

in the optimization process. Transitions between vowels and fricatives were found to 

be very difficult to reproduce accurately in this frame-based system. Even when ar- 

ticulatory estimates of central fricative and surrounding voiced speech were accurate, 

errors in the transition between the two had a profound effect on the way the resyn- 

thesis was perceived. Good resynthesis, producing speech perceived as the correct 

fricative class, often required hand tuning of parameters controlling the dynamics of 

the vowel-fricative and fricative-vowel transitions. The problem was most apparent 

for the non-sibilant sounds. If parameters were not chosen carefully, the fricative 

would often sound like an alveolor fricative, rather than the intended fricative. 

Dynamic fricative acoustic-to-articulatory mapping has proven to be a difficult 

problem. Current models of fricative production are limited in their ability to re- 

produce fricative spectra and speaker dependent differences. These modeling errors, 

along with known perceptual ambiguities and the finite amount of information in 

fricative segments, limit acoustic-to-articulatory mapping of fricatives in isolation. 

By using fricative specific knowledge in the form of constraints, acoustic features and 

acoustic distance metrics, consistent articulatory estimates can be obtained for static 

fricatives. The use of contextual information from adjacent voiced segments can also 

improve fricative estimates in dynamic acoustic-to-articulatory mapping. Much re- 

mains to be done to improve fricative acoustic-to-articulatory mapping in both the 

static and dynamic cases. Improve models of fricative production and articulation 

will significantly improve all aspects of fricatives acoustic-to-articulatory mapping. 

Additional work is needed to address the difficult issue of source optimization and 

improve results in regions of transition between vowels and fricatives. 
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APPENDIX A 

Phonetic Symbols 

Symbol As in Phonetic class 

M rice unvoiced alveolar fricative 

N rise voiced alveolar fricative 

III mission unvoiced palato-alveolar fricative 

M vision voiced palato-alveolar fricative 

ßl teeth unvoiced dental fricative 

/»/ teethe voiced dental fricative 
/f/ strife unvoiced labio-dental fricative 

M strive voiced labio-dental fricative 

N — unvoiced velar fricative 

M — unvoiced uvular fricative 

M water labial-velar approximate 

N beat high front vowel 
N father low back vowel 

N boot high back vowel 

Table A.l: Phonetic symbols used in this document, along with examples of their 
usage and their phonetic classification. Note that the phones /x/ and /\/ are not 
used in English and, therefore, do not have examples of usage. 
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